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1 Introduction

Assortative mating, the process through which people interactively choose each other as spouses, is a

complex, consequential and informative phenomenon.1 It has important consequences for the structure of

society, for inequality and integration, and it tells a lot about social structures, patterns of interactions and

preferences. However, it is a complex process, and while tempting it is problematic to read preferences

directly from the empirical outcomes. The mapping of preferences to outcomes in a process subject to

constraints is not straightforward. Outcomes are constrained in complex ways, not least the gendered

distribution of the characteristics of interest, the competition among peers for alters with the desired

characteristics, and the fact that alters are agents with preferences too. Additionally, the fact that the

process is dynamic, where the context changes continually, not only because of external historical reasons,

but also endogenously, as the distribution of single people changes as others marry.

Research on assortative mating has a long history of looking at the data, usually tables of spouse pairs

classified by the characteristic of interest, and making inferences about the data generating processes

in terms of homogamy preference, competition for desirable characteristics, female hypergamy prefer-

ence, or relative desirability of different characteristics leading to status exchange. Earlier work tends to

read directly from patterns in the tables, or simple summaries. But loglinear modelling of these tables,

predominant in the literature since the 1980s, is markedly superior, by controlling for the marginal distri-

butions and correlated characteristics. For instance, raw data may show lots of women marrying up, but

loglinear analysis may correctly detect that this is explained entirely by a gendered distribution where

men are higher on average.

The research question that motivates this research is whether loglinear models of tables of achieved

marriages correctly capture evidence of underlying preferences, such as homophily, competition, female

hypergamy, or relative ranking of attributes in the context of status exchange. This is partly a question

about loglinear models, but more fundamentally it concerns the extent to which the theoretical mecha-

nisms leave detectable evidence in the resulting data, the tables of spouse pairs usually used in analysis.

The paper focuses on the specific issue of female hypergamy in assortative mating by education. This

is of particular contemporary interest in the context of a reversing gender gap in education. While some

commentators are convinced that hypergamy preferences are entrenched in most societies, much re-

search based on loglinear models shows that most observed hypergamy is driven by the inequality in the

marginal distributions, in which case it should disappear with time as the marginal distributions of educa-

tion equalise (or even reverse). We ask whether, under a number of different data generating processes,

hypergamy preference is accurately detected by loglinear models of the square table of marriages, and

thus whether we can trust the conclusions based on empirical research about the evidence for hypergamy

preference.

This is addressed by simulating a number of ideal-typical mechanisms, overlaying varying levels of

hypergamy preference over a number of distinct processes driving assortative mating. The simulations

show that realistic patterns of assortative mating can be generated by quite different processes. Asym-

metric preferences superimposed on these simulations yield data from which loglinear models reliably

detect evidence of hypergamy, in a cleanly monotonic fashion, but with two important caveats. First,

under certain circumstance loglinear analysis of the table of resulting marriages will report evidence of

1Id: prefpar.org,v 1.4 2019/07/09 12:11:03 brendan Exp $
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non-zero net hypergamy even in the absence of a preference, and second, the relationship between the

strength of the preference and the size of the parameter estimate differs according to the type of data

generating process. These features are largely due to the temporal nature of the process: through re-

peated operation through time, with dynamically changing pools of remaining single agents, symmetric

processes may cumulate into tables of achieved marriages that have asymmetric properties. If longitudi-

nal data is available (e.g., cohorts with date of first marriage and spouse information) it will permit better

models to be fitted. Restricting the data to recent marriages will also help; this is commonly advocated,

but potentially costly in data terms. However, in the absence of such data, the bias due to modelling

cumulated marriages is relatively small in magnitude.

2 Assortative mating and preferences

Research on assortative mating has a long history in sociology, demography, economics and biological

anthropology. Sociological interest in assortative mating can be motivated variously, by the extent to

which societies are open or closed, by the structure of inequality, or by the structuring of the life course.

Currently there is significant activity on issues such as the interplay between homogamy or heterogamy

and factors such as

• the income distribution (e.g., Salverda and Brals, 2012; Ravazzini, Kuhn and Suter, 2019)

• inter- and intra-generational inequality (Schwartz, 2013)

• migration, ethnicity and status exchange (Choi & Mare, 2012; Schwartz, Zeng & Xie, 2016; Telles

& Esteve, 2019; Azzolini & 22:20:25, 2013),

• effects on outcomes such as transitions between cohabitation and divorce and their dissolution

(Mäenpää & Jalovaara, 2013, 2014), or paid work in later life (Visser & Fasang, 2018)

2.1 Loglinear models and international comparisons

Assortative mating became reinvigorated as a topic in the early 1990s, when the use of loglinear models of

square tables of marriages became established (Mare, 1991; Kalmijn, 1991b, 1991a, 1994, 1998; Qian,

1998; Smits, Ultee & Lammers, 1998; Raymo & Xie, 2000; Smits, Ultee & Lammers, 2000; Halpin &

Chan, 2003; Schwartz, 2013). Loglinear models effectively estimate the underlying pattern of assortative

mating, controlling for the strong and often uninformative effect of the marginal distributions. They also

allow the exploitation of readily accessible data, namely tables of spouse characteristics (ideally of recent

marriages), to draw conclusions about the processes and structures generating them.

Assortative mating remains a fertile base for development of loglinear models of square tables: Bucca

and Urbina (2019) present a Lasso regularisation approach to selecting models, which they show to

be more sensitive (particularly with small or sparse data sets) to the data generating process than con-

ventional goodness of fit statistics like BIC. Similarly, Schwartz et al. (2016) demonstrates very clearly

that loglinear models are necessary to detect evidence of status exchange by controlling not only for

the marginal distributions but also the association between the various status dimensions. Bouchet-Valat

(2014) presents a single index, the Mean Absolute Odds Ratio, a transformation of loglinear coefficients,

which can be interpreted as a measure of the strength of homogamy.

Large-scale international comparisons are also common, testing theories about transitions to “moder-

nity”, changes in the economic position of females, or differences between cultures (e.g., Confucian vs

Protestant vs Catholic), and using country characteristics to argue about the processes driving assortative

mating. Much, but not all, of this work has been in terms of parameters of loglinear models, and thus
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separates effects of the marginal distributions from the processes that operate within their constraints

(Smits et al., 1998; Raymo & Xie, 2000; Smits et al., 2000; Smits & Park, 2009; Katrňák, Fučík & Luijkx,

2012; Monaghan, 2014). A certain amount of this comparison is still conducted in terms of raw levels

of homogamy or heterogamy (e.g., Esteve, McCaa & López, 2013). A completely different approach was

taken by Blossfeld and Timm (2003), where duration models on longitudinal data, estimating the hazard

of marrying up, etc. (see also Chan & Halpin, 2003). While it is very attractive to incorporate the dynamic

dimension, as the duration models do, the loss of control for the marginal distributions is a problem: the

hazard of marrying up does not depend just on the individual’s characteristics and the time-dependent

hazard function, but also the number of single alters with a higher education, and the distribution of

peers. Loglinear models lose the individual dynamic focus, but control for margins.

Schwartz et al. (2016) make an interesting contribution to a debate on status exchange (Rosenfeld,

2005; Kalmijn, 2010; Gullickson & Fu, 2010; Rosenfeld, 2010) demonstrating convincingly why log-

linear models are necessary to detect the presence of status exchange, by controlling not only for the

marginal distributions, but also for correlation between the two status factors, and that simpler indices

of association are misleading. This is a valuable paper in that it tackles in detail how to relate complex

specifications of loglinear models to theoretical arguments, how to estimate very specific quantities (in

particular, the extent to which there are excess cases in status exchange cells, over and above what would

be observed without status exchange preferences). The current paper represents a similar exercise, if at

a more fundamental level: the research question concerns whether square tables of spouse pairs actually

contain enough information to detect the theoretical quantity by means of loglinear models.

Economics has made a contribution to this area, both at theoretical and empirical levels. Naturally,

economists tend to regard the partnership process as a market-like, competitive process. Monaghan

(2014) and Nielsen and Svarer (2009) are informed by economic theory, and look for economic ratio-

nality (regarding income expectations) as explainers of educational assortative mating but with little

success. Monaghan finds only modest evidence of a link between returns to education and assortative

mating within countries. Nielsen and Svarer (2009) similarly find that theoretical expectations based

on economic models of rational agents maximising expected future income have little power, and rather,

that the tendency for individuals to marry those they meet in the educational environment (the same or

a nearby institution) accounts for half the pattern of sorting.

The distinctive contribution of economics is more at a theoretical level. Following Becker’s extension

of the boundaries of economics to include family formation matters (Becker, 1981, esp ch 4), Burdett

and Coles (1997) adapt job-search theory to create an abstract model of assortative mating from first

principles, and show that the familiar sorting we observe empirically can emerge from rational agents

looking for the most desirable partner, using heuristics to decide when to settle for their current choice

or to continue searching in a context of uncertainty.

In other fields including what might broadly be referred to as biological anthropology, much of the

current concerns have to do with the interplay between social processes and genetic distributions. For

instance, Hugh-Jones, Verweij, St. Pourcain and Abdellaoui, 2016 show that assortative mating by edu-

cation leads to correlations within couples of polygenetic scores that predict educational attainment.

2.2 The reversing gender gap in education and female hypergamy norms

Over the past several decades many countries have experienced a significant shift in the impact of gender

on educational attainment. The traditional gender gap at the expense of females has reduced, and in

many cases reversed with females achieving higher levels of education on average than males (Vincent-

Lancrin, 2008; OECD, 2008). Figure 1 uses data from a selection of OECD countries on the proportion

of graduates aged 25–34, and shows that a female lead in participation emerged widely between about
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1990 and 2010, driven by a combination of factors including the growth in the third level system, in

female labour participation and in the sort of white-collar occupations where higher qualifications are

typically required.

Figure 1: Gender and participation in higher education, OECD countries

While in earlier cohorts in most countries, men tended to be better educated than women, with the

result that women marrying “up” was relatively common, current cohorts are faced with a situation where

females are better educated on average, and pairs exhibiting female hypergamy are correspondingly rarer.

The outcome of what we might term “excess female hypergamy” in the past tended to be taken as norma-

tive, and affected ideas of what constituted a suitable partner. Thus, it was widely considered desirable

that the husband in a couple should be better educated. Hence the shift in the gender distribution of

education has lead to fears that desirable matches will be harder to come by, with well-educated women

and poorly-educated men potentially having a harder time finding partners. However, the question arises

whether this preference is what we might call a “driving norm”, i.e., something that is resistant to change

and drives structural outcomes, or a “reflective norm”, something that reflects what is currently observed

and portrays it as desirable, but which will change as the experienced reality changes. A second ques-

tion is to what extent there has been, empirically, excess female hypergamy: given the traditional male

advantage in educational outcomes, there will be more female-hypergamous couples even if matching is

random with respect to education, but do we observe even more than this?

This question has usually been tested via modelling tables of current (or first) marriages. There is

widespread agreement that the bulk of female hypergamy is driven by the margins. For instance, Kalmijn

(1998, p 413) says “once such differences are taken into account through loglinear analyses, researchers

generally find little evidence of asymmetry”, and Schwartz and Mare (2005, fn 11) find that parameters

accounting for female hypergamy do not improve the fit of the model. As I show below, application

of similar models to current European Social Survey data on a large number of European countries is

consistent with this point of view, showing at most some evidence of weak but declining relative female
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hypergamy.

However, popular discourse and some researchers interpret the empirical excess of female hyperga-

mous couples as evidence of a strong and persistent norm for women to “marry up”. A relatively early

paper in the literature is even titled “Do American women marry up?”; even without the benefit of log-

linear models, it concludes “not much” (Rubin, 1968). Rather more recently, Hakim baldly states:

“Most women prefer economic dependence on men, if it is on offer, and increasing educa-

tional attainment among women has had remarkably little effect on women’s preference for

marrying ‘up’ if they can, to a better-educated and higher-earning spouse” (Hakim, 2007, p

130)

and:

“Women’s aspiration to marry up, if they can, to a man who is better-educated and higher-

earning, persists in most European countries.” (Hakim, 2011, p 30)

Other writers are more measured in their assessment of the persistence of the aspiration to marry up in

the face of radical change in educational distributions. Van Bavel (2012) considers a number of possible

outcomes, including both the persistence of the aspiration in the face of declining opportunities (leading

perhaps to increased status exchange, or increased spinsterhood), and adaptation to the new margins

(e.g., more male hypergamy). Esteve, García-Román and Permanyer (2012) directly address the effect

of the gender gap reversal on hypergamy in a mostly empirical paper, using IPUMS census extract data

on 56 countries. They show a very strong correlation between an index of female hypergamy and female

disadvantage and use this to infer that preferences have changed. However, this is an unsurprising find-

ing, given the structural constraints of tables of marriages (one that is perhaps descriptively interesting),

and doesn’t necessarily say anything about preferences, but rather the changing constraints within which

they operate. See also Esteve et al. (2016), which uses even more extensive data on 120 countries.

2.3 Research using simulation

André Grow, Jan van Bavel and colleagues have been working for the past several years on the reversal

of the gender gap in education and its implications for female hypergamy, using agent-based simula-

tion models (van Bavel, 2012; Grow & van Bavel, 2015; van Bavel, Schwartz & Esteve, 2018). Their

simulations are sophisticated, taking into account homophily (in terms of age and education level), gen-

eral desirability of the potential partner (represented as earnings prospects), the possibility of divorce

and repartnering, mortality, the structuring role of the educational system, etc. Unlike the simulations

described below they allow male–female differences in the parameterisation. Their primary goal is to

approximate the observed empirical distributions and their changes across cohort, in a way that is con-

sistent with plausible theoretically informed mechanisms, with a view to determining whether changing

patterns are evidence of changing preferences, or are consistent with the same preferences operating with

different distributions. Their broad conclusion is that it is the latter.

This is very interesting work because it simulates preferences to generate outcomes, and compares

simulated outcomes with empirical reality. By virtue of using simulation, it is one of the few streams of

AM research with an explicitly stated generative model. Much existing research clearly has sophisticated

theoretical ideas about how the processes operate, and some research explicates part of the processes

in detail, but most effort is put into creating and justifying the statistical model of the outcome rather

than the generative process. Burdett and Coles (1997) would be an exception: as is often the case with

economists, they work from a relatively simple but explicit mathematical model, and derive a reduced-

form statistical model that estimates parameters of the theoretical model. By virtue of being an explicit
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statement of the data-generating process, simulation can also be seen as embodying a theoretical model,

rather than a statistical one.

The Grow–van Bavel simulations differ from those used in this paper in a number of important re-

spects, primarily in being empirically focused and having a commitment to being at least approximately

realistic, while the simulations in this paper address the analytic question of the extent to which the

parameters of the data generation process can be detected by modelling the outcome data.

3 Four forms of assortative mating process

We commonly observe patterns of assortative mating such that spouse pairs are disproportionately similar.

These patterns can theorised as arising from a number of different processes. As a rough generalisation,

different disciplines will see different sorts of processes as being at least plausible: much biologically-

informed work tends to expect the explanation to involve choosing mates with high reproductive fitness,

while economists often assume the desired characteristic is earning potential. Sociology tends to prefer

arguments based on culturally-mediated tastes and norms (such as religious or ethnic endogamy), or

structural factors such as segregation by social class.

We can differentiate between processes that involve preferences, and those that involve structure.

That is, patterns can be driven by individuals choosing between potential partners, or by individuals be-

ing exposed to different distributions of potential partners. We can further divide the preference processes

into two: preferences for high values of certain attributes of the alter, leading to competition, and prefer-

ence for the attributes of the ego and alter to be close, or homophily.2 While homophilous processes will

directly lead to like marrying like, competitive processes do it indirectly: while everyone desires the most

desirable alter, only the most desirable egos are reciprocated. That is, while homophilous preferences

map directly onto homogamous patterns, homogamy emerges from “competitive” preferences, without

being implicit in them.

Patterned assortative mating will also emerge due to structural reasons, such as geographic or social

segregation, or homophilous patterns of voluntary interaction. If people marry people in their own neigh-

bourhood, and educational attainment is unevenly distributed geographically, educational homogamy

will be higher than under independence as a side effect. Mare (1991) points out that the educational

system itself can be a source of such structure, in that in spending time in education you interact with

people with similar educational opportunities. Not only do schools serve as meeting places, but the time-

structure of education has a strong effect: the higher your level of education, the later you leave the

system. Thus by the time you start to search for a partner, many of those who left the system earlier have

already made matches.

4 Excess educational homogamy and the ESS

Before embarking on the simulations, let us consider an empirical case. In this section, we model the

outcomes of assortative mating by education across a number of cohorts and a wide range of European

countries, using the European Social Survey. The European Social Survey is a valuable source of data

on many aspects of life in European countries, including partnership. It contains data on many different

countries (36 in at least one wave), with data collected in a fashion that is strictly comparable across

2Sometimes the preference may not centre on a zero difference, but on a positive value. Age and height might be examples
of this, such that husbands are often older and taller, but not too much. As with educational assortative mating, it is a difficult
problem to go from spouse distributions by height or age to claims about preferences, but separate work on simulation of partnering
by height suggests that it is quite likely that individual couples have a propensity to replicate the average height difference in the
population.
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time and country, over eight waves between 2002 and 2016. While it is not longitudinal, the repeated

collection means that we can build up quite substantial decadal cohorts, sampled at different time points.

Data on education is coded according to ISCED (Schneider, 2010), reduced to four categories (primary

or less, incomplete secondary, complete secondary, third level). While for many reasons it is considered

ideal to model only recent first marriages (to exclude the effects of divorce and mortality, and recognising

that processes affecting re-marriage may be quite different), research has shown that analysing tables of

current marriages does not result in significant bias (Schwartz & Mare, 2012).

4.1 Excess female hypergamy

We can define an index of “raw” hypergamy as the ratio of hypergamous to hypogamous marriages, i.e.,

the number of marriages where the husband is better educated divided by the number where he is less

educated.3 The left panel of Figure 2 shows the evolution of this measure of observed excess hypergamy

across the cohorts and ESS countries. Since it is a ratio, the value 1 implies no excess. As can be seen

there is a very large variation in the observed level of hypergamy, but on average the ratio is substantially

above one. However, there is a strong secular decline in the ratio, such that for a not insignificant number

of country–cohort observations, there is hypogamy rather than hypergamy.

Of course, both the levels of and temporal trends in hypergamy will be very strongly affected by the

marginal distributions. In most of these cohorts, men are better educated, so even if education had no

bearing on partner choice there will be an excess of hypergamous couples, and this excess will decline

across cohort. The right panel of Figure 2 shows the excess-hypergamy index calculated on the table of

independence (i.e., as if couples were formed at random relative to education). This shows the same

temporal pattern of temporal decline (or even reversal), but on a smaller scale: some but not all of

the excess hypergamy is due to the marginal inequality. In other words, there is more hypergamy that

expected under independence, but it is declining as the educational distributions change.

4.2 Log-linear models

The excess female hypergamy index is a crude measure. We are more interested in assessing the extent

to which there is greater hypergamy than one would expect given the marginal distributions. We get an

impression of this by comparing the two panels of Figure 2, but loglinear models provide the means to

address this question more formally, by allowing us to predict data given the margins plus a parsimonious

model of the association between husbands’ and wives’ education that separates out the symmetric and

the asymmetric effects.

Given a two-way table of spouse pairs, an imparsimonious saturated model can be described as fol-

lows:

log(Fij) = µo + µRi + µCj + µRCij

or, in multiplicative terms:

Fij = τoτ
R
i τ

C
j τ

RC
ij

That is, the frequency in each cell is affected by a grand mean effect, a row effect, a column effect, and a

cell-specific association effect. Since this model has at least as many parameters as there are cells in the

table, it is saturated, reproduces the data exactly, and tells us little. More useful models are arrived at by

putting constraints on the µRC
ij term, using fewer degrees of freedom and potentially yielding information

about the form of the association. Three are in common use:
3Esteve et al. (2012) use the log of this quantity as the dependent variable in their models; note in the graphs below the y-axis

has a log scale.
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Figure 2: Observed and expected excess hypergamy by country and cohort, ESS waves 1 to 8, weighted
data. Y-axis is log-scale.

Figure 3: Female hypergamy loglinear estimates by country and cohort, ESS waves 1 to 8

9



• the distance model

• the crossings model, and

• the quasi-symmetry model.

The distance model assumes the educational variable is ordinal (in fact, with equal intervals), and

pairings are more common or rarer depending on the distance between the two categories:

log(nij) = β0 + βRi + βCj + δ
|R−C|
ij

The crossings model is also ordinal, but in a sequential sense. The values in the variable are thought

of not as being located on an unobserved scale, but as having a series of barriers between them. Thus a

1/4 match requires stepping over the 1/2, 2/3 and 3/4 barriers, where as 3/4 only requires passing the

3/4 barrier. The effect of each barrier is estimated.

The quasi-symmetry model doesn’t require ordinality, but assumes that, conditional on the row and

column margins, the tendency for i/j and j/imatches are equal. Full symmetry requires the two marginal

distributions to be the same.

log(Fij) = µo + µRi + µCj + δRCij , δij = δji

See Table 1 for a visualisation of the association parameters.

Each of these models replaces the unconstrained association terms, µRC
ij , with a smaller number of

parameters. However, conditional on the margins, all are symmetric in effect. Female hypergamy is an

asymmetric effect, and we fit it in these cases by adding a single parameter which applies to all cells

one one side of the diagonal (for female hypergamy, for cells where the husband’s education is higher).

The interpretation of a hypergamy parameter in this context is the extra tendency for couples to be

female-hypergamous after controlling for the margins and a parsimonious symmetric association. It is

conventional in the literature to interpret this term as a measure of net female hypergamy.

4.3 Modelling the data

If we apply these models to the ESS data, country by country, we find that the crossings model fits poorly,

but the quasi-symmetry and distance models perform better (BIC favours the distance model for 27 out

of 36 countries, quasi-symmetry for 8, and independence for 1; see appendix). The female hypergamy

parameter is significant at 5% for 15 of the 36 countries, and at 1% for 7. If we add an interaction with

cohort (as a linear trend) this is significant at 5% for 4 countries for QS, and 7 for the distance model

(and shows hypergamy is declining for all but one of these). Fitting separate hypergamy parameters by

country and cohort (see Figure 4) shows no very strong patterns, with some evidence of decline.

The empirical picture is broadly consistent with the observations of Kalmijn (1998), Schwartz and

Mare (2005) mentioned above, that taking account of hypergamy is often statistically unnecessary, once

symmetric association is taken account of. That is not to say there is no evidence of hypergamy, but that

it is not a clear pattern.

5 Simulations

This leads us to the central research question of the paper: do loglinear models faithfully capture informa-

tion about the data generation process, in particular the operation of preferences? The specific question

we focus on is whether the asymmetric association term in a loglinear model really captures preferences
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Table 1: Symmetric and asymmetric association parameterisation

Distance model: 3 additional parameters
on a 4x4 table

a b c d
a 0 1 2 3
b 1 0 1 2
c 2 1 0 1
d 3 2 1 0

Crossings model: 3 additional parameters
on a 4x4 table

a b c d
a 0 1 1+2 1+2+3
b 1 0 2 2+3
c 1+2 2 0 3
d 1+2+3 2+3 3 0

Quasi-symmetry model: 6 additional pa-
rameters

a b c d
a 0 1 2 3
b 1 0 4 5
c 2 4 0 6
d 3 5 6 0

Asymmetric effect: 1 additional parame-
ter

a b c d
a 0 1 1 1
b 0 0 1 1
c 0 0 0 1
d 0 0 0 0
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Figure 4: Female hypergamy estimates, distance model, ESS data

for hypergamy (or hypogamy). Is the presence of a significant hypergamy term in the model evidence of

its presence in the data generating process? Is absence of significance good evidence for absence of an

effect? We address this problem through simple agent-based simulation, generating spouse pairs through

a variety of mechanisms, with hypergamy preferences varying from zero to strong, and applying loglinear

models to the resulting data.

We consider four basic simulations, each capturing a different sort of theoretical mechanism, as con-

sidered above:

• Homophily

• Competition

• Social structure

• Time structure

The core structure of the simulations creates separate populations of men and women, with educa-

tional status as four ordinal categories, distributed such that men have substantially higher education (see

Table 2). It then iterates through a series of random pairings, where if both candidates are “happy” with

the pairing they are moved to the “married” pool (which is an absorbing state). The two preference-based

simulations (homophily and competition) determine happiness based on the pairs’ educational charac-

teristics, while the two structural simulations have pairs marry at random, but constrain the pairings.

All of the simulations have a modifiable parameter which allows a preference on the part of women for

husbands with higher levels of education than theirs (hypergamy preference). Multiple runs are made,

with this parameter at different settings, including a hypergamy preference of zero.

12



All four simulations will generate more or less strong patterns of assortative mating, but they are

symmetrical in design (except for the hypergamy parameter). To the extent that excess female hyper-

gamy is observed, it is likely a consequence of the the uneven marginal distributions and, when used,

the hypergamy-preference parameter. However, as will be seen, hypergamy levels that deviate from

expectations under independence are observed for the homophily and time-structure simulations.

Note that unlike the agent-based simulations produced by the van Bavel/Grow group (van Bavel et

al., 2018; van Bavel, 2012; Grow & van Bavel, 2015), which are intended to at least broadly capture

the actual historical/empirical processes taking place in the countries studied, these simulations have

the analytical goal of explicating the relationship between preferences, mechanisms and the resulting

patterns of assortative mating.

Table 2: Levels of education in the simulations
Base distribution 1 2 3 4
Men 6.25 18.75 31.25 43.75
Women 25.00 25.00 25.00 25.00
Social structure distributions 1 2 3 4

Group 1 Men 9.77 24.19 32.26 33.87
Women 33.33 27.78 22.22 16.67

Group 2 Men 6.25 18.75 31.25 43.75
Women 25.00 25.00 25.00 25.00

Group 3 Men 3.03 13.64 30.30 53.03
Women 14.29 21.43 28.57 35.71

5.1 Homophily

The homophily simulation implements the notion that people wish to form partnerships with people like

themselves. Homophily may be qualitative, where people prefer partners from the same category (reli-

gion, ethnicity), or quantitative, where difference on some dimension (height, age, years of education)

is disfavoured. Qualitative homophily may imply no preference between groups other than the in-group,

while quantitative homophily implies that while perfect matches are preferred overall, near matches are

preferred to far matches. For a characteristic like education, quantitative homophily is more intuitively

attractive, so under this scenario the probability of proposing is inversely related to the difference in

education. Necessarily, this is symmetric, as the distance is the same for each partner of a candidate pair.

Clearly, homophily will tend to overpopulate the diagonal, and will make hypergamy as unpopular as

hypogamy. We can see this structure as consonant with the “distance” loglinear model.

In the simulation, couple formation depends on their similarity on the education dimension, their

values on a dimension of attractiveness that is independent of education, and an ephemeral pairwise

random factor: Define σij as the satisfaction of individual i with potential match j: this is a weighted

sum of the difference in educational levels ε (where ε ∈ (1, 2, 3, 4)), scaled from -0.5 (maximal mismatch)

to 0.5 (exact match), and individual j’s non-educational characteristics (random uniform on the interval

(-0.5, 0.5), independent of education). If σi plus µ times a match-specific random uniform value on the

interval (-0.5, 0.5), ζ, is greater than 0, νij is true. If both νij and νji are true, the match takes place.

σij = ω(
1

2
− |εi − εj |

3
) + (1− ω)ηj (1)

νij = σij + µζijt > 0 (2)

νij ∧ νji ⇒ marriedij (3)
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Note that in this simulation, the education levels of both ego and alter matter in for ego’s decision, as

well as alter’s non-educational characteristics. The simulation has two analyst-set parameters, ω which

controls the weight given to education versus other characteristics, and µ which controls the effect of the

match-specific random component. The match-specific random component is important in introducing

an element of non-determinacy.

5.2 Competition

The competition simulation implements the notion that higher spouse education is desirable, and thus

the probability of either individual proposing is positively related to the education of the other. The

simulation assumes the individual has regard only to the other’s education, without reference to his/her

own (except for the hypergamy-preference effect). Burdett and Coles (1997) make the quite reasonable

assumption that even where choices are made in terms of spouse-desirability, individuals will have refer-

ence to their own characteristics and refrain from proposing to someone “out of their league”; while this

is realistic, it is not necessary for the emergence of strong assortative patterns, and indeed is probably a

weak effect in that people who fail to propose for this reason would very likely have been refused any-

way. Thus in the basic simulation no reference is made to own characteristics, and this enters only in the

hypergamy parameter.

In practice, couple formation depends on their desirability on the education dimension, their values

on a dimension of attractiveness that is uncorrelated with education, and an ephemeral pairwise random

factor.

Define σij as the satisfaction of individual i with potential match j: this is a weighted sum of j’s

educational levels εj , scaled to -0.5 – 0.5, and individual j’s non-educational characteristics (random

uniform on the interval (-0.5, 0.5), independent of education). If σi plus a match-specific random uniform

value on the interval (-0.5, 0.5), ζ, is greater than 0, νij is true. If both νij and νji are true, the match

takes place.

σCij = ω(
εj − 1

3
− 1

2
) + (1− ω)ηj (4)

We determine the outcome by putting σCij into equations 2 and 3, as with the homophily simulation.

5.3 Social structure

Strong patterns of assortative mating may emerge even where the characteristic plays no role in the

pairing decision, when the population is segregated into more-or-less endogamous groups where the

characteristic of interest has different distributions. Thus if people tend to marry within their own social

class, or their own region, and the distribution of education differs by class or region, there will be

association between spouses’ education levels even if education has no bearing on pairing decisions.

This is simulated by creating three sub-populations with low, medium and high levels of education (with

the same male–female asymmetry in each, see Table 2) and allowing marriage at random within each

population. We achieve this using either of the previous algorithms with ω set to 0, so that only the

non-education random factor affects decision making.

5.4 Time structure

The time-structure simulation is based on Mare’s insight that the educational system itself structures

pairing processes (Mare, 1991). The simulation focuses on the effect of the temporal structure, the
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notion that in many life courses partnership formation happens more-or-less soon after completion of

education (it ignores Mare’s second observation that educational institutions serve as meeting places).

That is, typically people will seek to form a partnership after leaving education (perhaps with a delay),

and typically people will not marry while still in education. Consequently, those who leave education

early have a pool of potential spouses who have also left early, and those who leave later find that many

early-leavers are already partnered. In the simulation, pairing is random with respect to education,

except that before a threshold time (which rises with level of education) the probability of proposing is

near zero, and substantially above zero after.

Individual i’s satisfaction with a match depends on timing: if simulation time t is greater than or equal

to the “release time” for i’s educational group, ρεi it depends on the non-educational characteristics of

the matched individual, ηj . If not, it is reduced by 1.0. The release times, ρ, are strictly increasing with

level of education. The value σT can then be substituted into equations 2 and 3 as with the homophily

and competition simulations. Note that if the value µ in equation 2 is sufficiently high, it will permit

marriages to take place before the relevant release time, but at a lower rate than after.

σTij =

{
ηj − 1 if t < ρεi

ηj if t >= ρεi
(5)

5.5 Hypergamy

Female hypergamy preference is added to the foregoing simulations in the form of a parameter γ that

raises the female satisfaction with the match if the male’s education is higher than hers. In effect we

replace equation 2 with the following:

νij = σij + µζijt + γδij > 0 (6)

where δij takes the following values:

δij =


0 if i is male

0 if εj ≤ εi
1 if i is female and εj > εi

(7)

6 Results

The simulations are written in Stata (predominantly using Mata, Stata’s matrix language), and code will

be made available. For the purposes of this paper, very large populations are used, 5 million men and 5

million women, and the simulations are run until 4.5 million couples are formed. The large population

means that run-to-run variability is less, and the loglinear models return more stable results; it also means

that small effects are detectable, as long as they are consistent. Seven to twelve iterations are needed for

most of the simulations, but the time-dependent simulation is a little slower due to its staging of entry to

the partnership process.

6.1 Patterns of assortative mating

Our first concern is whether the several simulations result in realistic patterns of assortative mating. The

top row of Figure 5 shows, for each simulation, the departure from independence as Pearson residuals

(O−E√
E

). An “independence” simulation is included for reference: this pairs people without any reference

to education (except for the hypergamy preference, when applied). While, as expected, the independence

simulation shows no significant residuals, all four of the main simulations show the familiar patterns

15



4

3

2

1

W
om

en

1 2 3 4

Men

Independence, no FH

4

3

2

1

W
om

en

1 2 3 4

Men

Competition, no FH

4

3

2

1

W
om

en

1 2 3 4

Men

Homophily, no FH

4

3

2

1

W
om

en

1 2 3 4

Men

Time-structure, no FH

4

3

2

1

W
om

en

1 2 3 4

Men

Social-structure, no FH

4

3

2

1

W
om

en

1 2 3 4

Men

Independence, FH

4

3

2

1

W
om

en

1 2 3 4

Men

Competition, FH

4

3

2

1

W
om

en

1 2 3 4

Men

Homophily, FH

4

3

2

1

W
om

en

1 2 3 4

Men

Time-structure, FH

4

3

2

1

W
om

en

1 2 3 4

Men

Social-structure, FH

Residuals, men more educated

-301.1
-240.9
-180.7
-120.4
-60.2

0.0
60.2

120.4
180.7
240.9
301.1

Scale

Figure 5: Simulations without and with a strong hypergamy preference, Pearson residuals

of assortative mating (heavier diagonal, sparse in top right and bottom left), but homophily and time

structure are more marked than competition and social structure. For homophily versus competition, this

is largely because under homophily both individuals’ education is taken into account in each individual’s

assessment of the match, and thus ego and alter are more likely to have the same assessment of the

match. For competition, only alter’s characteristics are taken into account, so any given match is less

likely to involve agreement (i.e., everyone is happy with an attractive alter, but the alter reciprocates

only where the ego is also attractive). Similarly, the temporal segregation implied by the time-structure

is stronger than that by the social segregation. A further point to note is that the pattern of residuals is

very similar across time-structure and homophily, and across competition and social structure.

If we add a strong female hypergamy preference, the picture changes. The second row of Figure 5

shows the corresponding picture with a hypergamy preference parameter of 1 (a strong effect). The main

effect of the hypergamy preference is consistent across the four simulations (and independence, where

the only association is driven by the hypergamy preference). The main effect is to shift the weight of

the tables up and right, so the highest residuals tend to be in cells where the man is one level above the

woman. One interesting feature evident in the independence, competition and social structure panels is

that there is an excess of level 4 women marrying men in levels 1 and 2. While superficially counter-

intuitive, this is a direct consequence of the hypergamy preference: level 4 women cannot marry up, and

thus more educated men will be preferentially taken by less educated women, leaving the less educated

men for level 4 women to marry (if more slowly). The stronger homophilous patterns created by the

homophily and time-structure simulations mask this effect.

6.2 Model detection of the effect of hypergamy preference

Eyeballing the residuals in this manner is helpful, but it is difficult to clearly assess the effect of the

hypergamy preference. We can get a sharper picture of this by loglinear modelling. We create 4 × 4 × 2

tables for each simulation, where one panel has no hypergamy preference and the other does, and fit a

model which implies a common pattern of association (i.e., one that does not account for the hypergamy

preference). Figure 6 shows the residuals for the hypergamy-effect panel, indexing the difference due

to the hypergamy-preference parameter. This provides a more consistent picture, with all simulations

showing the pattern of highly educated women marrying down. Moreover, the strength of the effect is

similar across simulation, with the exception that the time-structure simulation has a very strong one-

level-up effect. This is largely due to the time structuring. That is, when a woman with lower education

emerges onto the partnership market, there are lots of males at the same level as she is, but she will

have to wait for the opportunity to marry up. And then, the opportunity to marry one level up (which,
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Figure 6: Loglinear residuals, indexing the difference due to hypergamy preference

by design, constitutes hypergamy just as much as marrying more levels up) arrives sooner than the

opportunity to marry more than one level up.

6.3 Estimating the hypergamy parameter

What happens when we apply the loglinear association models described above to the simulation data?

We consider the quasi-symmetry and distance models only, as in general the crossings model fits less

well. For each simulation, and for each of five levels of the hypergamy preference parameter (from 0 to

1 in steps of 0.25) we estimate the distance and quasi-symmetry models with the additional asymmetric

parameter. The magnitude of the loglinear hypergamy estimate is shown in Figure 7 (see also appendix).

The results from the two models are quite similar and have three main features:

• the loglinear estimate responds strongly and monotonically to the preference parameter, from near

zero at zero to relatively high levels at a preference factor of 1.0

• independence, competition and social structure are similar, with time-structure showing higher and

homophily lower estimates of the hypergamy effect

• though estimates are close to zero for zero preference, time-structure shows a significant positive

hypergamy effect and homophily a smaller but significant negative effect, in the absence of any

hypergamy preference.

Thus we see that the practice of estimating hypergamy preference from the loglinear parameter is

justified, but only to a first approximation. In particular, the fact that we observe significant effects for

two simulations even in the absence of hypergamous preference depends on the very large sample size

of 4.5 million couples. Normal survey samples do not have the power to detect these effects. However,

it is nonetheless the case that we observe hypergamy (as estimated by loglinear models) in its absence

as a preference, and furthermore, the strength of the parameter varies according to the data generating

process. Thus our interpretation of the hypergamy parameter has to be qualified: factors other than a

hypergamy preference can affect its size.

6.4 Time dynamics and a simpler homophily simulation

How could the data generating process produce hypergamy (as measured by loglinear models) over and

above that predicted by a symmetric association model? The answer lies in the time dynamics. The

loglinear model estimates the patterns in the table in a flat cross-sectional manner, but the processes

generating the table operate through time, and while these processes might be completely symmetric as
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Figure 7: The response of the loglinear hypergamy parameter to hypergamy preference
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they happen, the manner in which they dynamically alter the distribution of single people can sum over

time to an outcome that appears to have positive hypergamy (or negative, depending on the process).

We can examine this in the case of homophily with a much simpler simulation than the foregoing. We

start with the same uneven distributions of single males and females (160,000 of each), and iterate 20

times, pairing off numbers at each iteration proportional to the product of the proportions of single males

and females in each category, scaled inversely by the distance between the categories (all homogamous

matches marry, 75% of those one step apart, 56.25% for those two steps apart, and 42.2% of those three

steps apart). This is equivalent to people meeting at random, with a probability of marriage declining

with distance. We can use this to generate a three-way table of marriages by spouse characteristics by

iteration, and a two-way table collapsing across iterations.

Figure 8: Female hypergamy parameter, simple simulation, by iteration. The left panel shows the
parameter estimate (±1.96× SE) for new pairings at each wave, using a distance model. The right panel
shows estimates for cumulative marriages at each wave.

If we fit a distance model with a hypergamy parameter to the resulting data collapsed across iterations

(i.e., a 4×4 marginal table), we get a significant negative female hypergamy parameter, but if we model

any one wave on its own (i.e., new pairings that wave) we cannot reject the null. Figure 8 shows estimates

with confidence intervals, with in the left panel the effect for new marriages each wave, and in the right

panel the cumulative marriages by each wave. The effects for new marriages are consistently null, while

the cumulative marriages steadily build to a small but significant negative effect. While the vast majority

of pairings happen early, the later pairings (based on distributions of singles that have changed, with

proportionally more highly-educated men and more less-educated women) have the effect of creating a

cumulative pattern with apparent evidence of female hypogamy.

If we fit a model that interacts the margins with wave, the hypergamy effect disappears again. In

other words, while the data collapses over the wave margin into a pattern that suggests hypogamy, when

the data is modelled in a way that takes time into account, the correct inferences can be made.
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7 Discussion and conclusion

The mapping of preferences to outcomes in the context of constraints (such as the gendered distribution

of education) and of competition with peers, for alters who also have preferences and agency, is complex.

The foregoing simulations have demonstrated that a number of conceptually distinct mechanisms can

generate data with realistic patterns of assortative mating, and have thrown light in particular on the

consequence of asymmetric preferences for the outcomes. These are ideal-typical simulations, however,

and do not seek to generate adequate accounts of the empirical process. In the real world it is likely that

many of the mechanisms described are in operation in parallel, with social segregation by neighbourhood,

network, institutional affiliation, varying patterns of life course ordering across groups and so on being

very important, both homophilic and competitive preferences operating, and a more complex set of

attributes being taken into account. In particular there is likely to be more complex gender asymmetry

than a simple hypergamy preference. Another important difference is that while the simulations operate

batch-style on a single cohort, in the real world partnership formation is a rolling continuous-production

process.

However, empirical adequacy is not the primary goal. Rather, the purpose is analytical: to map

from preferences, in particular an asymmetric female hypergamy preference, to outcomes, and see how

well preferences can be detected by loglinear modelling of the resulting square table of marriages. In

so far, loglinear models have some success: broadly speaking the hypergamy preference is detected

monotonically in analysis of each simulation’s output. However, the relationship between the strength

of the hypergamy preference and the size of the corresponding parameter estimate varies across the

simulation mechanisms. More concerningly, for some mechanisms, the loglinear estimates are non-zero

when the hypergamy preference is zero. The difference in magnitude of the response may be because

within the mechanics of the different simulations there is more or less scope for a hypergamy preference

to operate. We have shown that for the homophily simulation it arises directly from the time dynamics:

the simulation mechanisms operate through time in a fashion that changes the structure of opportunity

(the distributions of the remaining single agents) such that a zero hypergamy preference operating at each

time point cumulates into a pattern of hypogamy. While a similar analysis has not been presented for the

time-structure simulation, the same is true: the staged release of individuals onto the marriage market

means the structure of opportunity has an even more marked temporal pattern, such that symmetric

preferences at each time point cumulate into an asymmetric hypergamous pattern.

The fact that time-dynamics yield unexpected results is most clearly evident in the relationship be-

tween the strength of the hypergamy preference and the magnitude of its parameter estimate, particularly

in the context of the simple homophily simulation (see Figure 8). That simplified simulation shows that

taking time into account solves the problem: the operation of preferences at each time point can be

captured correctly by loglinear association models, but a spurious hypogamy effect emerges when we

collapse along the time dimension. We can also see the complex nature of the association, and how it

varies with the strength of the preference parameter, by looking at the goodness of fit of the loglinear

association models of the main simulated data (see Table 3). (NOTE: currently this calculates BIC using
the number of table cells for N. Using the sample size gives different results, favouring parsimonious models
more. For loglinear models, there are arguments in favour of using the number of cells rather than the num-
ber of individuals, but in this case it is likely far too conservative.) Looking at the four mechanisms, plus

the independence simulation (where education is not considered, except via hypergamy), we use BIC to

compare the following models (with a hypergamy parameter):

• Independence (row and column effects only)

• Distance
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• Quasi-symmetry

• the saturated model.

Table 3: Association model preferred by BIC, across simulation mechanisms and strength of hypergamy
preference

FH pref Simulation
Independence Competition Homophily Time-structure Social structure

0 Independence Distance Saturated Saturated Distance
.25 Distance Saturated Saturated Saturated Distance

.5 Distance Saturated QS QS Distance
.75 QS Saturated QS Saturated QS

1 QS Saturated Saturated Saturated Saturated

The independence simulation is informative: while the independence model is preferred when there

is no hypergamy preference, as the preference rises, loglinear models see either a distance or quasi-

symmetric pattern, though our naive expectation would be that the association should be entirely de-

scribed by the hypergamy parameter. The competition and social structure simulations show sensible

results at zero preference, but as the preference rises (immediately for competition, later for social struc-

ture) the pattern of association becomes too complex for distance or QS to describe it adequately, and BIC

prefers the saturated model. Interestingly, homophily and time-structure show over-complex association

from the start, with a role for QS in the middle only of the preference range. Compare this to the models

of the real-world ESS data, where the distance and (to a lesser degree) QS models were preferred in

nearly all cases.

In short, the introduction of female hypergamy preferences into these dynamic simulation brings

about more complex association than might be naively expected, and for some mechanisms the associ-

ation is more complex even without hypergamy preferences. This is due to the dynamic nature of the

simulations, where the operation of even relatively simple preferences/mechanisms cumulates over time

into patterns that are more complex than expected.

The simulations as presented are simple, but capable of extension. The formulation of hypergamy

preference as a simple block asymmetry is potentially limiting, and it might be more realistic to model it

as a more complex gender asymmetry in preferences. Another path for further work could include com-

bining mechanisms, and calibrating against data, converging on the sort of work done by the Grow/van

Bavel group (e.g., Grow & van Bavel, 2015). Extending the simulations to address other theoretical is-

sues would also be attractive, status exchange being an obvious candidate. The simulations currently

take account of education and an unspecified attribute uncorrelated with education; it would be straight-

forward to extend them to incorporate other dimensions, and to explicitly model the impact of relative

preferences on behaviour, and on outcomes, relating to work in the tradition of Schwartz et al. (2016).

The simulations have a number of implications for the practice of assortative mating research. First

(and this is not a particularly new observation but has perhaps new force), different mechanisms can

generate quite similar patterns of assortative mating, so we need to use information additional to that in

square tables of marriages to differentiate between the mechanisms. Second, while loglinear models are

clearly necessary and far superior to simpler summaries of the structure of tables, we need to be cautious

about making inferences from parameters to preferences. Processes happen through time, while loglinear

models are one-shot. If at all possible, we should use data with a time dimension, and incorporate time

in the modelling. In the absence of properly longitudinal data, this can be read as a renewed injunction

to focus on recent marriages where at all possible.
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A Appendix

A.1 Simple homophily/hypogamy simulation

From simple homophily

• Cumulative with distance and fh

• Pooled with distance and fh

• Fit stats, beta & se for graph

A.1.1 Hypergamy effect in cumulative marriages after 20 waves

Iteration 0: log likelihood = -1433856.4

Iteration 1: log likelihood = -1433296.7

Iteration 2: log likelihood = -1433295.7

Iteration 3: log likelihood = -1433295.7

Poisson regression Number of obs = 320

LR chi2(10) = 288481.28

Prob > chi2 = 0.0000

Log likelihood = -1433295.7 Pseudo R2 = 0.0914

------------------------------------------------------------------------------

delta | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

men |

2 | 1.045278 .0057249 182.59 0.000 1.034057 1.056498

3 | 1.584068 .0066197 239.29 0.000 1.571094 1.597043
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4 | 2.015038 .0087688 229.80 0.000 1.997852 2.032225

|

women |

2 | -.1575084 .004482 -35.14 0.000 -.166293 -.1487238

3 | -.2762028 .0062689 -44.06 0.000 -.2884895 -.2639161

4 | -.2929823 .0087363 -33.54 0.000 -.3101051 -.2758594

|

dist |

1 | -.2626679 .0054513 -48.18 0.000 -.2733521 -.2519836

2 | -.5467012 .0051368 -106.43 0.000 -.5567692 -.5366333

3 | -.7974926 .0057183 -139.46 0.000 -.8087003 -.7862849

|

1.fh | -.052431 .0083606 -6.27 0.000 -.0688176 -.0360445

_cons | 6.885158 .0055418 1242.41 0.000 6.874297 6.89602

------------------------------------------------------------------------------

A.1.2 Hypergamy effect in wave-specific marriages pooled over 20 waves

Iteration 0: log likelihood = -1768128.4

Iteration 1: log likelihood = -495991.54 (backed up)

Iteration 2: log likelihood = -352273.96 (backed up)

Iteration 3: log likelihood = -193197.73

Iteration 4: log likelihood = -83065.516

Iteration 5: log likelihood = -21841.527

Iteration 6: log likelihood = -16650.813

Iteration 7: log likelihood = -16441.933

Iteration 8: log likelihood = -16440.415

Iteration 9: log likelihood = -16440.414

Poisson regression Number of obs = 320

LR chi2(29) = 3122191.81

Prob > chi2 = 0.0000

Log likelihood = -16440.414 Pseudo R2 = 0.9896

------------------------------------------------------------------------------

delta | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

men |

2 | 1.045278 .0057249 182.59 0.000 1.034057 1.056498

3 | 1.584068 .0066197 239.29 0.000 1.571094 1.597043

4 | 2.015038 .0087688 229.80 0.000 1.997852 2.032225

|

women |

2 | -.1575084 .004482 -35.14 0.000 -.166293 -.1487238

3 | -.2762028 .0062689 -44.06 0.000 -.2884895 -.2639161

4 | -.2929823 .0087363 -33.54 0.000 -.3101051 -.2758594
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|

wave |

2 | -2.643416 .0050972 -518.60 0.000 -2.653406 -2.633425

3 | -3.066574 .0062257 -492.57 0.000 -3.078776 -3.054372

4 | -3.400671 .007311 -465.15 0.000 -3.415001 -3.386342

5 | -3.678796 .0083687 -439.59 0.000 -3.695198 -3.662393

6 | -3.918313 .0094087 -416.46 0.000 -3.936754 -3.899873

7 | -4.128714 .0104331 -395.73 0.000 -4.149163 -4.108266

8 | -4.316729 .0114459 -377.14 0.000 -4.339163 -4.294296

9 | -4.486997 .0124501 -360.40 0.000 -4.511399 -4.462595

10 | -4.642042 .0134429 -345.32 0.000 -4.66839 -4.615695

11 | -4.785364 .0144324 -331.57 0.000 -4.813651 -4.757077

12 | -4.918865 .0154207 -318.98 0.000 -4.949089 -4.888641

13 | -5.04233 .0163957 -307.54 0.000 -5.074465 -5.010195

14 | -5.158612 .0173711 -296.97 0.000 -5.192659 -5.124565

15 | -5.26855 .0183472 -287.16 0.000 -5.30451 -5.23259

16 | -5.371087 .0193076 -278.19 0.000 -5.408929 -5.333244

17 | -5.468849 .0202704 -269.79 0.000 -5.508578 -5.429119

18 | -5.560932 .0212216 -262.04 0.000 -5.602525 -5.519338

19 | -5.650025 .0221847 -254.68 0.000 -5.693507 -5.606544

20 | -5.733876 .0231313 -247.88 0.000 -5.779212 -5.688539

|

dist |

1 | -.2626679 .0054513 -48.18 0.000 -.2733521 -.2519836

2 | -.5467012 .0051368 -106.43 0.000 -.5567692 -.5366333

3 | -.7974926 .0057183 -139.46 0.000 -.8087003 -.7862849

|

1.fh | -.052431 .0083606 -6.27 0.000 -.0688176 -.0360445

_cons | 9.619298 .0055775 1724.67 0.000 9.608367 9.63023

------------------------------------------------------------------------------

A.1.3 Hypergamy effect in wave-specific marriages pooled over 20 waves, allowing margins to

change by wave

Iteration 0: log likelihood = -6647341.9

Iteration 1: log likelihood = -4693624 (backed up)

Iteration 2: log likelihood = -4255288.3 (backed up)

Iteration 3: log likelihood = -3878117.7 (backed up)

Iteration 4: log likelihood = -2367627.1 (backed up)

Iteration 5: log likelihood = -1872727.4 (backed up)

Iteration 6: log likelihood = -761507.35

Iteration 7: log likelihood = -247554.88

Iteration 8: log likelihood = -8975.8025

Iteration 9: log likelihood = -1531.4589

Iteration 10: log likelihood = -1218.5439

Iteration 11: log likelihood = -1214.7338
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Iteration 12: log likelihood = -1214.7256

Iteration 13: log likelihood = -1214.7256

Poisson regression Number of obs = 320

LR chi2(143) = 3152643.19

Prob > chi2 = 0.0000

Log likelihood = -1214.7256 Pseudo R2 = 0.9992

------------------------------------------------------------------------------

delta | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

men |

2 | 1.098607 .0065035 168.93 0.000 1.08586 1.111353

3 | 1.609508 .0072405 222.29 0.000 1.595317 1.623699

4 | 1.946142 .0092729 209.87 0.000 1.927968 1.964317

|

women |

2 | -.0002545 .0049653 -0.05 0.959 -.0099862 .0094773

3 | -.000379 .0066298 -0.06 0.954 -.0133731 .0126152

4 | -.0004467 .0090516 -0.05 0.961 -.0181874 .0172941

|

[ ...output suppressed... ]

|

dist |

1 | -.2876985 .0054818 -52.48 0.000 -.2984426 -.2769545

2 | -.5755819 .0051842 -111.03 0.000 -.5857428 -.565421

3 | -.8637119 .0058504 -147.63 0.000 -.8751784 -.8522454

|

1.fh | -.0001772 .0084316 -0.02 0.983 -.0167029 .0163484

_cons | 9.433832 .0064976 1451.89 0.000 9.421097 9.446568

------------------------------------------------------------------------------

A.1.4 Hypergamy effect in wave-specific marriages and cumulative marriages, by wave

Delta Cumulative

Wave beta se p beta se p

1 -0.00003 0.00935 0.99718 -0.00003 0.00935 0.99718

2 -0.00027 0.03809 0.99427 -0.01119 0.00906 0.21660

3 0.00044 0.04815 0.99268 -0.01840 0.00889 0.03842

4 0.00003 0.05802 0.99957 -0.02368 0.00877 0.00696

5 0.00006 0.06786 0.99933 -0.02780 0.00869 0.00139

6 -0.00362 0.07781 0.96285 -0.03120 0.00863 0.00030

7 -0.00297 0.08770 0.97301 -0.03406 0.00859 0.00007

8 -0.00516 0.09773 0.95788 -0.03652 0.00855 0.00002

9 -0.00362 0.10783 0.97322 -0.03867 0.00852 0.00001

10 0.00098 0.11783 0.99334 -0.04054 0.00849 0.00000

11 -0.00328 0.12816 0.97957 -0.04223 0.00847 0.00000
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12 0.00121 0.13871 0.99302 -0.04375 0.00845 0.00000

13 0.00026 0.14919 0.99862 -0.04513 0.00843 0.00000

14 -0.00312 0.16008 0.98443 -0.04641 0.00842 0.00000

15 -0.01684 0.17105 0.92160 -0.04761 0.00841 0.00000

16 0.00644 0.18105 0.97162 -0.04869 0.00840 0.00000

17 -0.01463 0.19288 0.93955 -0.04972 0.00839 0.00000

18 -0.01095 0.20373 0.95715 -0.05068 0.00838 0.00000

19 -0.02023 0.21452 0.92488 -0.05159 0.00837 0.00000

20 -0.01219 0.22683 0.95715 -0.05243 0.00836 0.00000

A.2 Association models and simulations

Association models such as distance or quasi-symmetry attempt to capture the association between the

male and female marginals with a restricted set of parameters (i.e., more parsimoniously than the satu-

rated model which predicts perfectly). How well do these models capture the association in the simulated

data when there is a hypergamy parameter, across the various simulations? We consider fit for:

• independence (row and column parameters only)

• distance

• crossings

• quasi-symmetry

• the saturated model

with a parameter for asymmetry (aliased in the saturated model), for simulations with hypergamy prefer-

ences between 0 and 1 in steps of 0.25. We consider two tests: BIC, and the LR test versus the saturated

model.

+----------------------------------------------------+

| sim fh igof dgof xgof qgof |

|----------------------------------------------------|

1. | Independence 0 . 5 0.65 . 5 0.46 |

2. | Independence .25 . 0.80 . 9 0.38 |

3. | Independence .5 . 0.33 . 0.81 |

4. | Independence .75 . . . 0.39 |

5. | Independence 1 . . . 0.46 |

|----------------------------------------------------|

6. | Competition 0 . 0.66 . 0.75 |

7. | Competition .25 . . . . |

8. | Competition .5 . . . . |

9. | Competition .75 . . . . |

10. | Competition 1 . . . . |

|----------------------------------------------------|

11. | Homophily 0 . . . . |

12. | Homophily .25 . . . . 1 |

13. | Homophily .5 . . . 0.32 |

14. | Homophily .75 . . . 0.34 |
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15. | Homophily 1 . . . . |

|----------------------------------------------------|

16. | Time-structure 0 . . . . |

17. | Time-structure .25 . . . . |

18. | Time-structure .5 . . . . 9 |

19. | Time-structure .75 . . . . 4 |

20. | Time-structure 1 . . . . 2 |

|----------------------------------------------------|

21. | Social-structure 0 . 0.15 . 0.79 |

22. | Social-structure .25 . 0.25 . . 4 |

23. | Social-structure .5 . 0.90 . 0.83 |

24. | Social-structure .75 . . . 0.36 |

25. | Social-structure 1 . . . . 2 |

+----------------------------------------------------+

Looking first at goodness of fit relative to the saturated model, we see that the independence+FH

model fits very poorly everywhere except in the independence simulation for FH=0 (and there it fits

moderately poorly). The crossings model is similar, with bad fit everwhere except for low FH in the

independence simulation. Distance and QS perform better, being preferable to the saturated model in a

number in 7/25 models for distance and 12 of 25 for QS.

+----------------------------------------------------------------------------------------------+

| sim fh ibic dbic xbic qbic sbic bicmod |

|----------------------------------------------------------------------------------------------|

1. | Independence 0 260.106 260.4023 268.1608 266.9487 270.9531 Independence |

2. | Independence .25 277.9634 259.237 266.3331 267.1175 270.7275 Distance |

3. | Independence .5 476.1939 262.3817 352.9701 265.3734 270.4884 Distance |

4. | Independence .75 890.2222 276.042 480.7443 266.583 270.2645 QS |

5. | Independence 1 1408.964 274.2286 725.4441 266.0664 270.0765 QS |

|----------------------------------------------------------------------------------------------|

6. | Competition 0 1767.738 259.5566 1013.452 265.1974 270.1637 Distance |

7. | Competition .25 2795.203 400.4484 1136.241 302.7711 269.9359 Saturated |

8. | Competition .5 3320.112 616.1035 1263.077 337.1529 269.6623 Saturated |

9. | Competition .75 5193.396 1360.008 1431.358 500.2571 269.4427 Saturated |

10. | Competition 1 11120.6 3054.274 2802.189 742.4145 269.328 Saturated |

|----------------------------------------------------------------------------------------------|

11. | Homophily 0 310922.6 321.0991 104601.6 275.0697 269.9989 Saturated |

12. | Homophily .25 293157.1 298.1049 96126.66 274.0708 269.9484 Saturated |

13. | Homophily .5 276065 294.0702 89035.85 266.5513 269.8317 QS |

14. | Homophily .75 256420.7 319.8618 82086.5 266.2836 269.6795 QS |

15. | Homophily 1 220071.2 318.7644 69555.01 282.3 269.5828 Saturated |

|----------------------------------------------------------------------------------------------|

16. | Time-structure 0 240381.1 8649.161 75816.8 353.3171 270.1278 Saturated |

17. | Time-structure .25 287027.5 9419.938 89744.59 295.1207 270.1098 Saturated |

18. | Time-structure .5 326200.4 10661.17 100480.1 269.3514 270.0306 QS |

19. | Time-structure .75 362678.7 12592.48 114144 270.671 269.9221 Saturated |

20. | Time-structure 1 389190.7 14467.85 124622 272.4056 269.8129 Saturated |
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|----------------------------------------------------------------------------------------------|

21. | Social-structure 0 8807.955 265.2584 4539.38 265.924 270.9947 Distance |

22. | Social-structure .25 7935.145 263.5725 3887.832 271.6302 270.8062 Distance |

23. | Social-structure .5 6439.438 258.3769 3201.119 265.4231 270.5913 Distance |

24. | Social-structure .75 5292.988 279.5011 2810.488 266.9176 270.3918 QS |

25. | Social-structure 1 4254.736 277.6159 2349.266 272.3946 270.2299 Saturated |

+----------------------------------------------------------------------------------------------+

BIC tells a broadly similar story. Independence is favoured only where it makes sense (independence

simulation, FH=0). Distance and QS each are judged best in 6 of the other 24 models, but the saturated

model is favoured in 12. In other words, the restricted patterns of association are inadequate about half

the time, and more so for higher levels of the FH preference.

For the independence simuation, this is an interesting finding. If there is no FH preference, this is

properly modelled by the independence model, confirmed by BIC. However, if the only association mech-

anism is the hypergamy preference, one would be inclined to expect that independence+FH should fit

well here. Instead distance and QS are favoured. In other words, the introduction of a simple asymmetry

seems to result in a more complex pattern of association. The same feature is visible in most of the other

simulations: the saturated model is often preferred, perhaps more so with higher levels of hypergamy

preference. Notably, the homophily and time-structure simulations favour the saturated model, even at

FH=0.

Two remarks: first, adding a simple asymmetry seems to result in a more complex pattern of associa-

tion. Second, homophily and time-structure seem to have complex association even at FH=0, due to the

dynamics.

A.3 Modelling ESS: fit

How well do different association models fit the ESS data?

+-------------------------------------+

| country igof dgof xgof qgof |

|-------------------------------------|

1. | 1 0.00 0.15 0.69 1.00 |

2. | 2 0.00 0.00 0.00 0.22 |

3. | 3 0.00 0.00 0.00 0.70 |

4. | 4 0.00 0.38 0.00 0.88 |

5. | 5 0.00 0.00 0.00 0.89 |

|-------------------------------------|

6. | 6 0.00 0.00 0.00 0.68 |

7. | 7 0.00 0.05 0.00 . |

8. | 8 0.00 0.35 0.00 0.58 |

9. | 9 0.00 0.00 0.00 0.15 |

10. | 10 0.00 0.49 0.00 0.35 |

|-------------------------------------|

11. | 11 0.00 0.00 0.00 0.05 |

12. | 12 0.00 0.00 0.00 0.02 |

13. | 13 0.00 0.00 0.00 0.13 |

14. | 14 0.00 0.00 0.00 0.01 |
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15. | 15 0.00 0.03 0.00 0.83 |

|-------------------------------------|

16. | 16 0.00 0.76 0.00 0.30 |

17. | 17 0.00 0.00 0.00 0.72 |

18. | 18 0.00 0.00 0.00 0.02 |

19. | 19 0.00 0.00 0.00 0.33 |

20. | 20 0.00 0.00 0.00 0.33 |

|-------------------------------------|

21. | 21 0.00 0.61 0.00 0.85 |

22. | 22 0.00 0.66 0.00 0.61 |

23. | 23 0.00 0.00 0.00 0.85 |

24. | 24 0.03 0.97 0.05 0.42 |

25. | 25 0.00 0.00 0.00 0.41 |

|-------------------------------------|

26. | 26 0.00 0.00 0.00 0.74 |

27. | 27 0.00 0.00 0.00 0.09 |

28. | 28 0.00 0.00 0.00 0.81 |

29. | 29 0.00 0.03 0.00 0.59 |

30. | 30 0.00 0.66 0.00 0.64 |

|-------------------------------------|

31. | 31 0.00 0.01 0.00 0.93 |

32. | 32 0.00 0.00 0.00 0.94 |

33. | 33 0.00 0.48 0.00 0.98 |

34. | 34 0.00 0.25 0.00 0.93 |

35. | 35 0.00 0.02 0.00 0.01 |

|-------------------------------------|

36. | 36 0.00 0.54 0.67 . |

+-------------------------------------+

+------------------------------------------------------------------------------------------+

| country ibic dbic xbic qbic sbic minbic bicmod |

|------------------------------------------------------------------------------------------|

1. | 1 562.8256 511.4749 526.5027 547.345 551.6077 511.4749 Distance |

2. | 2 1280.064 746.838 898.7849 751.2217 763.2118 746.838 Distance |

3. | 3 2314.339 947.1699 1449.76 925.5885 971.2773 925.5885 QS |

4. | 4 1646.285 679.3859 1223.437 729.4262 745.7615 679.3859 Distance |

5. | 5 2186.063 880.1889 1265.897 874.6835 919.0762 874.6835 QS |

|------------------------------------------------------------------------------------------|

6. | 6 1259.433 749.7919 881.0875 776.6011 810.6279 749.7919 Distance |

7. | 7 928.7445 640.5676 724.1208 677.1447 677.1447 640.5676 Distance |

8. | 8 1929.398 784.5774 1085.264 844.2591 873.7538 784.5774 Distance |

9. | 9 1531.736 855.2949 1138.263 849.37 876.663 849.37 QS |

10. | 10 981.1846 691.7349 914.9291 736.6401 749.7192 691.7349 Distance |

|------------------------------------------------------------------------------------------|

11. | 11 2537.548 948.1536 1464.013 930.139 963.6594 930.139 QS |

12. | 12 1645.423 876.8029 1200.683 881.0716 901.1255 876.8029 Distance |
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13. | 13 1943.432 969.8442 1242.51 926.8728 964.2173 926.8728 QS |

14. | 14 1832.756 924.3208 1147.812 974.2914 1003.018 924.3208 Distance |

15. | 15 2281.903 832.0522 1346.86 875.0264 918.5381 832.0522 Distance |

|------------------------------------------------------------------------------------------|

16. | 16 771.3423 560.7589 605.6583 607.5621 610.7843 560.7589 Distance |

17. | 17 1726.921 723.3979 1112.925 757.7154 769.6356 723.3979 Distance |

18. | 18 2160.087 914.295 1545.973 960.7098 991.8074 914.295 Distance |

19. | 19 1969.702 912.0849 1504.929 909.736 947.3417 909.736 QS |

20. | 20 629.8578 578.1218 595.1238 599.6061 605.9771 578.1218 Distance |

|------------------------------------------------------------------------------------------|

21. | 21 727.1707 574.9028 699.286 622.6119 626.9083 574.9028 Distance |

22. | 22 746.8091 600.2107 737.3238 641.5223 649.1426 600.2107 Distance |

23. | 23 974.2497 632.9633 730.4144 646.1884 669.6323 632.9633 Distance |

24. | 24 498.4127 517.8903 534.7498 560.9384 564.551 498.4127 Independence |

25. | 25 2602.309 885.9625 1507.976 924.0046 966.3445 885.9625 Distance |

|------------------------------------------------------------------------------------------|

26. | 26 1438.913 789.7984 942.4892 781.7081 801.149 781.7081 QS |

27. | 27 1246.255 679.8405 921.4111 687.8567 691.6807 679.8405 Distance |

28. | 28 2346.949 906.6887 1621.46 886.9941 930.2557 886.9941 QS |

29. | 29 684.5633 669.968 717.4544 716.5854 738.7454 669.968 Distance |

30. | 30 923.7282 677.389 811.8058 722.7408 737.7679 677.389 Distance |

|------------------------------------------------------------------------------------------|

31. | 31 1179.344 822.0948 999.8318 860.2596 905.3884 822.0948 Distance |

32. | 32 1691.828 735.5416 1104.374 747.6829 760.4804 735.5416 Distance |

33. | 33 1039.892 612.6021 750.1014 650.8402 659.4267 612.6021 Distance |

34. | 34 1104.231 644.2053 697.2482 684.6597 705.4229 644.2053 Distance |

35. | 35 913.905 688.8611 860.2595 723.7098 728.7034 688.8611 Distance |

|------------------------------------------------------------------------------------------|

36. | 36 579.1015 517.2425 522.4376 557.395 557.395 517.2425 Distance |

+------------------------------------------------------------------------------------------+
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