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Plan :

@ Motivation : SPDE & SDE
@ SDE & uniform step methods
© Introduce Stochastic PDE and uniform step methods

@ Adaptive method & selection of time step

» Backstop (SPDE example with Multiplicative noise)

Numerical results
» A.S. finite N (SPDE example with Additive noise)
Numerical results

© Deterministic application ?

» Deterministic adaptive time stepping : local error control.
» Setting here : adapt for stability.

Let's look at some adaptive results
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1. Stochastic Swift-Hohenberg - additive noise

dX = BX — (1 + A)*X + cX? — X3dt + BdW
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2. Stochastic Kuramoto-Sivashinsky - multiplicative
dX = (—Xooox — X — XX )dt + 5 dW
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Motivating SDE Example:
Deterministic ODE with non-globally Lipschitz nonlinearity:

X'(t) = —X3, given X(0)=Xp, t>0.

X(t) = 0 is globally asymptotically stable.
Explicit Euler discretization:

Yoi1=Y,—AtY3, neN

Y, = 0 locally asy, stable for Yy € (—\/Z/At, \/2/At)
Unstable 2-cycle : {—\/2/At, \/2/At}
If Yo ¢ [—,/2/At, \/2/At] then limp_o0 | Ya| = oo.

For each fixed At > 0 dynamics is different
@ As At — 0 the scheme converges.

Now include a stochastic perturbation - - -
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Motivating Example: Stochastic
Consider the map
Yor1=Yn— AtY2 + AB,.;, neN.
~——
:=N(0,At)

» For fixed At the stochastic perturbation A3, can push trajectories

out of basin of attraction (—\/Z/At, \/2/At)

» Problem with growth of Y, with n!

In this talk we think about changing At to Atp,;.
Idea : Pick a At,;1 depending Y, to stay in (—\/2/At,,, \/2/At,,)

In fact 8 from Browmian motion: ASpi1 = (B(tnt+1) — B(tn))
Stochastic map is the explicit Euler-Maruyama approximation of SDE

thi1

Xt = X(e) -~ [ X(sas + | " ()

tn

dX(t) = —X(t)® + dj(t).
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Euler-Maruyama and growth : (e.g. f(X)=—-X3,g=1)

SDE: dX = f(X)dt + g(X)dg.
» Suppose f or g
© are not globally Lipschitz

@ and satisfy polynomial growth condition
Then E [||X]|F] < .

Euler-Maruyama method:  Yy,11 = Y, + Atf(Y,) + g(Ya)ABn+1.
For numerics would like :
Bounded moments : E[||Y;]|P] < oo, p>0
Strong convergence : E [|X(t,) — Yal?] < CAt?, g > 0.
However
o Fixed step At : [Mattingly, Stuart, Higham 2002]

» Second moment instability :

lim E [|Ya]?] = oo.

n—oo

o Non-convergence: [Hutzenthaler, Jentzen, Kloeden 2011].
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Some Explicit Methods for SDEs that work ...

» Tamed Methods : Eg [Hutzenthaler et al 2012], [Wang& Gan 2013],
[Hutzenthaler&Jentzen 2014], [Sabanis 2013, ...],...

Eg : Drift-tamed Euler-Maruyama

At

mf(yn) +8(Yn)ABn+1
» Basic Idea : Introduce a perturbation

e Balanced Methods : Eg [Tretyakov, Zhang 2013],...

e Truncated Methods : Eg [Mao 2016, Liu& Mao 2017]

e Projected Methods : Eg [Beyn, Isaak, Kruse 2015]

1. Prove Moment bounds

Yn+1 =Yy +

sup  sup  E[[|Yq]|P] < oc.
neN ne{0,1,...,N}

2. Prove strong convergence
E[IX(®) - VP < Gae2.

Alternatively try adapting the step size.
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Stochastic PDE :

We saw at start Stochastic Swift-Hohenberg :
dX = BX — (1 + A)2X + cX? — X3dt + BdW
Write our SPDEs as ODE on Hilbert space H :
dX = —AX 4+ F(X)dt + B(X)dW

We assume :

e —A:D(—A) — H the generator of analytic semigroup
S(t)y=e""At>0.
e B(X) globally Lipschitz

IB(X) = B(Y)ll;3 < LIX = Y], X,Y €H
|ay2ex)| , < L+ ).
0
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Stochastic PDE :dX = —AX + F(X)dt + B(X)dW
» Define the Wiener process with covariance @ by

Wix,t) = 3 12 on(x)Bi(t).

k=1

» Sk(t), be independent identically distributed Brownian motions.
» ¢4 e.func. of @, an orthonormal basis of L2,

(Often assume same e.func. as linear operator —A).

» 1, > 0 are e.values of covariance operator @ for Wiener process.
Determine spatial correlation :

Below :- parameter r. (r =—0.5, Q =1, d =1).

Note - most applications do not have globally Lipschitz reaction terms F
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SPDEs: dX = —AX + F(X)dt + B(X)dW

@ Mild solution

X(t) = S(t)Xo+/0 5(t—s)F(X(s))ds+/O S(t—s)B(X(s))dW(s).

With S(t) := et
@ Discretize in space -

e.g by Finite Elements or spectral Galerkin: X(t) ~ Y(t), An = A.
@ Approximation in time to the mild solution:

Y (tre1) = Sa(Atnrr) Y(t)+ / T S (tra—s)F(Y(s))dst / " S (tn1—s)B(Y)dW.

where, Aty 1 := thi1 — t, and Sp(Aty q) i= e At An,
Yoi1 = Sh(Atni1) (Yo + Dtar1 F(Yn) + B(Yn) AWoi1)

Exponential integrator... still issue with nonlinearity.

(Will also consider semi-implicit).

e Uniform At : Many authors : see for example [L & Rougemont],
[Jentzen], [Wang], [Cohen], [Tambue], ...
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SPDES : Tamed/Stopped methods

With non-globally Lipschitz F, there are four basic approaches :
@ Explicit tamed Euler-Maruyama [Gyongy etal 2016].
Similar in approach to tamed methods for SDEs.
Perturbation of F to control growth,

Fo~ ) (1)
1+ VAt|[F(X)||
@ ‘“nonlinearity stopped” method of [Jentzen & Pusnik 2015].
Exponential integrator with use of indicator function to turn off
non-linearities if
Fool= () veeh @
—\At/) ’ "4

© Splitting based methods - often require exact nonlinear flow.
[Bréhier, Cui & Hong 2019, Bréhier & Goudeénege 2019, Cai, Gan & Wang
2021]
© Adapt the time step ...
[Campbell & L. ], [Hausenblas et al, 2020], [Chen, Dang, Hong]
T TS



Adaptive time-stepping:

» Issues from Adaptivity:

© Increments Af3, ., depend on Y.
Using that At,11 is a bounded F;, stopping time
by Doob optional sampling theorem [Shirayev 96]

E [Aﬁn—kl’]:tn] =0 as.
E [‘Aﬂn_t,_l‘z’ftn] = Atn+1 a.s.

@ Random time steps with t, = ZJ’-’:_OI Atpys.

- need to assume each Atpy; is F;, measurable.
- there is a random integer N to arrive at a final time T.
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Adaptive Time-stepping: Upper and Lower bounds

Have random N, At

How to ensure we reach our final time T 7
@ want finite number of random steps N a.s. and At,11 #0
@ need control on At,,1 to examine convergence.

Hence require that :
0< Atn+1 < Atmax.
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Two Approaches : to get to final time T
@ Introduce Atnin and fix deterministic p = Atmax/Atmin-

0< At.min < Atn—f—l < Atmax-

» When At, 1 > Atmpin use the standard method.
» When At,1 < Atmin Introduce a 'backstop’ method and set
Atn—&-l - Atmin
|| Yall

Example strategy :Atp11 < AtmaXHF(Y 0

For SDEs : [Kelly & L, 2017,2018]

For SPDEs : [Campbell & L. ]

» Can then show P[At,y1 < Atmin] < €. (See [Kelly, L. & Sun]).
@ For particular strategy for picking At,.1 show N a.s. finite.

Example strategy:

@+ Yol
@+ TFOIP)
For SDEs : [Fang & Giles 2016, 2020]

For McKean Vlasov : [Reisinger & Stockinger, 2021]
For SPDEs : [Chen, Dang, Hong], [Campbell & L.]
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Two Approaches : to get to final time T
Q@ Introduce Atni, and fix deterministic p = Atmax/Atmin-

0< At'min < Atn+1 < Atmax-

» When At, ;1 > Atyin use the standard method.
» When At,11 < Atnin Introduce a 'backstop’ method and set
Atn—}—l = Atmin
I Yall

Example strategy :Atp41 < AfmaxH,:(y Y

For SDEs : [Kelly & L, 2017,2018]

For SPDEs : [Campbell & L. ] (multiplicative noise)

» Can then show P [At,1 < Atmin] < €. (See [Kelly, L. & Sunl]).
@ For particular strategy for picking At,.; show N a.s. finite.

Example strategy:

(L +[1Yal)
@+ IFYa)I)

A tn+1 S Atmax

For SDEs : [Fang & Giles 2016, 2020]
For McKean Vlasov : [Reisinger & Stockinger, 2021]

For SPDEs : [Chen, Dang, Hong], [Campbell & L.] (SPDE additive noise)
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Backstop Approach : multiplicative noise

dX = [-AX 4+ F(X)]dt + B(X)dW
On a Hilbert space H with norm ||.]|
» Assumptions on F.

o F satisfies one sided Lipschitz growth condition, X,Y € H
(F(X) = F(Y), X = Y) < Lp | X = Y.

IDF (X £ty < (X +[1X]).
for some Lg, c1,co > 0.
» Method :

@ Discretize in space :
eg spectral Galerkin Y(t) = ZJ-Jyj(t)ngj(x) ~ X(t)
e Intime: Y" = Y(t,)
» Atpy1 > Aty @ exponential approximation in time.
> Atp1 < Atyi, @ backstop with At 1 = Atnin
e.g. nonlinear stopped method [Jentzen & Pusnik 2015].
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Backstop: p = Atmax/Atmin-
Example Adaptive Strategy: Pick At,.1 so that

Rl
Atn—f—l < Atmaxm-

o Atpi1 < Atpyin then we use a backstop method
o Atpi1 > Atnin then use standard exponential method.

At
At

IFCYRIl < == 1 Yall < ol Yall.
n+1

To bound non-global Lipschitz nonlinearity: (avoid bound on E[|| Y,||?]).

IF(Ya) = FX ()2 < 2IF(Ya)ll* + 2l F(X(ta) 1
< 207 Vall® + 2] F(X(ta)) 12

Now add in and subtract X(t,) so that Y, = X(t,) — Yo — X(tn)
IF(Ya) = FX(ta))IIP < 402 Eall? + 4pl X (t) 17 + 2] F(X (2a)) 12
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Strong Convergence [Stuart Campbell, L.]

Let X(T) be the mild solution to SPDE.

Let Yy be the numerical approximation defined over {t,}nen, an
admissible time-stepping strategy.

For Xo € L2(D, D((—A)?)), e >0

» Multiplicative noise : r € (0,1)

1/2 1 1+r+e
<EHX( YNH> < C(TY AKX 4 Atdar + Ay ™).

(restrictive conditions on nonlinearity - eg not X — X3).
Proof : outline

@ Need to deal with conditional expectation.
E.g. touse E [|Aﬂn+1]2|ftn} = Atpi1  a.s.
@ Need to look at error over 1-step (not final time estimate)
@ Need to combine adaptive scheme and backstop and deal with

random number of steps N.
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dX = AX + X — X3dt + BXdW

x = [0, 2],

p =100,
T=5

Atmax
Bt = TEOO

Ny = 512,

B =1,

,_

RMS Error

AC convergence in At
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T
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Numerical Methods

Compare 4 numerical methods

o Adaptive
YP = Sh(Atnsr) (Y 4+ F(YD)Atpyr + B(Y) AW, 1)
@ Stopped

h
Yn+1 -

Sh(At) (y,y +{F(YMAt+ B(Y" AW, 11} 1||F(Y,¢)||§(A1t)9>

@ Tamed Exponential (no proof)
Yh = Sy(At) (Y,f +F(YM AL+ B(YN)A W,,+1>
@ Tamed EuIer—MNaruyama
Yh =Yi+ (YAt + B(YAW,4
z f(X
where C(X) = —AX + F(X) and f(X) = Wn)ﬂx)”
For fixed step methods set At = At = ﬁ > Aty
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dX = AX + X — X3dt + BXdW

AC RMS error vs CPU time, r=0

10!
x = [0,2n],
p = 100, 100} 1
T =5, 8
Atmax g
At, < , =
! IIF( ) =
N, =512, 107 ]
B = ]-7 Adapt
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SPDE - Additive noise

dX = [~AX + F(X)]dt + BdW

On a Hilbert space H with norm ||.]|.
Assumption on F

@ F satisfies one sided Lipschitz growth condition, X, Y € H
(F(X)=F(Y), X =Y) <L | X = Y|
IF(X) = F(Y)Il < €@+ [IX]ig + [IYIE)IX = YI|.
IDF(X)ll ey < CA+IX[E)II
IFX)le < CA+[IX]E), [FX)I < C@+I[XIE)IXI,

where |[ul|g = sup,ep |u(x)|.
Here can look at, for example, Allen-Cahn equation F(X) = X — X3.
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Showing N a.s. finite

dX = [~AX + F(X)]dt + BdW

@ Discretize in space :
eg spectral Galerkin Y(t) =3 . y;(t)¢;(x) =~ X(t)
@ In time : Y(t,) = Y, from exponential method.
We have T =Y At,i1. Need N as. finite.

(L+ 1Y)
@+ IFYNIZ)

0< Atn+1 < Atmax
Our starting point : we know we can do K steps. Prove that must reach T

Other see : [Fang & Giles 2020] for SDEs and [Chen, Dang, Hong] for
SPDEs.
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Showing N a.s. finite

Adaptive exponential method is defined by the recursion

tht1
Y™ = S (Atp1)PrY" +/ Sh(tas1 — s)PaF(Y")ds
tp

zn

thy1
+ / Sh(tar1 — ta) PaBP,dW(s).
t

n

wn

@ Bound E[||W"||P] and E[||F(W")||P] for all n
@ Z": use adaptivity to bound E [||ZK||P] after K deterministic steps.
© Use dominated convergence to bound
E [HZNHP] =K [IimK_mo HZK(TK)HP] independently of K, N,
Ti = Yopo Atnr1lneky-
@ Timestepping plus moment bounds form a contradiction argument so
» Ja.s. finite N
> with E[ry] = T,
» and E[N] = O(1/Atmax).
@ Finite upper bound on T and reverse Markov shows P[ry < T] = 0.
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Strong Convergence [Stuart Campbell, L.]

Let X(T) be the mild solution to SPDE.

Let Y be the numerical approximation defined over {t,}nen, an
admissible time-stepping strategy.

For Xo € L2(D, D((—A)?)), e >0

» Additive noise : r € (—1,0]

2 1/2 min(L r —€ Lk
<]E HX(T) . YICH ) S C(T)(Alerrfe_i_AtmaX(zf(lﬁL )/2) +)\M_ﬁ1+ )

Notes:
@ less restrictive conditions on nonlinearity: eg X — X3 OK.
@ includes space-time white.

Proof : Use that have finite N a.s. and moment bound.
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Numerical Methods

Compare 4 numerical methods

° Adaptive
Yi = Sh(Atny1) (Y + F(YP)Athrr + BAW,41)

@ Stopped

Yh | = Sh(At) (Y,f + {F(Y)At + BAW, 1} H||F(Y,?)||§(A1t)9>

@ Tamed Exponential (no proof)
Y | = Sy(At) (Y,f +E(YIAt + BAW,,+1>
@ Tamed Euler-Maruyama
Y =YI 4+ C(Y)At+ BAW,4
where C(X) = —AX + F(X) and £(X) = %)ﬁ)fmn
For fixed step methods set At = At = W LS~ At,
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Swift-Hoenberg SPDE

o SPDE defined by
dX = (BX — (1 + AX + cX? — X3)dt + BdW,

we set = —0.7, c=1.8 and B =0.5.

@ Used in many applications involving pattern formation, including fluid
flow and neural tissue.
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dX = BX — (1 + A)X + cX? — X3dt + BdW (r = —0.5)

Swift-Hohenberg Swift-Hohenberg
B B \\\ +77+7777+7777+7777,_,
103 103
~5—Exp adapt ~5—Exp adapt
‘9' 0t —%—ExpTamed | | ‘9‘ 102k —%—ExpTamed | |
H Sl Adapt H Sl Adapt
I —¥—Sltamed N —¥—Sltamed
- —F—Stopped - —F— Stopped
10y 10!
100 2 Il 1 i 1 0 0 [ L 1 I
109 10? 10! 10° 10° 102

CPU time

Gabriel Lord Adaptive time-stepping for S(P)DEs December 2, 2021 29/35



Summary so far

@ Introduced issue of non-convergence for explicit methods

» SDE
» Stochastic PDEs
o Adaptive time stepping :

» Conditional Expectation to recover standard Brownian motion
properties.

> Need 0 < At,41 and finite N a.s.
Two strategies

» Used Backstop strategy - for multiplicative noise.
Examined strong convergence

» Proof of N a.s. Finite - for additive noise.
Examined strong convergence

@ In both cases see improved efficiency
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Application in deterministic setting 7
Given

dX = —AX 4+ F(X)dt + B(X)dW
Examined exponential integrator:
Yn+1 = Sh(Atn-‘rl) (Yn + Atn-&-ll:( Yn) + B(Yn)AWn—i-l)

where, Atp 1 := thy1 — t, and Sp(Atyy ) = e Atrt1hn,
Alternative : semi-implicit

Yoi1 = (I + AtA) (Y, + Ato 1 F(Y,) + B(Yn) AW, 1)

Similar results on the adaptivity.
In deterministic setting B = 0:
Get standard exponential integrator

Yn+1 = Sh(Atni1) (Yo + Atni1 F(Ya))
Or semi-implicit method
Yoy = (I + AthrlA)_l (Yo + Atp1F(Ya))
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Deterministic case

Standard exponential integrator
Yoy1 = Sh(Atn-i-l) (Yn + Atn-i-l'l:( Yn))
Or semi-implicit method

Yor1 = (I + At A) (Yo + Atar1F(Y0))

@ There is no instability directly from from the linear term.
@ But nonlinearity is explicit.

@ Have a restriction on At from the nonlinearity.
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Deterministic KS : u; = — Uy
At = 0.1, At = 0.6702
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Deterministic SH : u; = Bu — (1 + A)?u + cu® — o3
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Summary ... again

@ Introduced issue of non-convergence for explicit methods
» SDE
» Stochastic PDEs
o Adaptive time stepping :
» Conditional Expectation to recover standard Brownian motion
properties.
> Need 0 < At,y1 and finite N a.s.
Two strategies
» Used Backstop strategy - for multiplicative noise.
Examined strong convergence
» Proof of N a.s. Finite - for additive noise.
Examined strong convergence
> In both cases see improved efficiency

@ Potential application for deterministic system.

» Thank you.
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