Adaptive timestepping for Stochastic (P) DEs

```
Gabriel Lord: https://www.math.ru.nl/~gabriel/Radboud University
The Netherlands.
gabriel.lord@ru.nl
```

INAF - 2 Dec

```
Stochastic Differential Equations (SDEs) joint with Conall Kelly (University College Cork, Ireland) Fandi Sun (Heriot-Watt University, UK.) & Stochastic Partial Differential Equations joint with: Stuart Campbell (Heriot-Watt University, UK.)
```

Plan:

- Motivation : SPDE & SDE
- SDE & uniform step methods
- Introduce Stochastic PDE and uniform step methods
- Adaptive method & selection of time step
 - Backstop (SPDE example with Multiplicative noise)
 Numerical results
 - ► A.S. finite *N* (SPDE example with Additive noise) Numerical results
- Deterministic application ?
- ▶ Deterministic adaptive time stepping : local error control.
- ► Setting here : adapt for stability.

Let's look at some adaptive results

1. Stochastic Swift-Hohenberg - additive noise

$$dX = \beta X - (1 + \Delta)^2 X + cX^2 - X^3 dt + BdW$$

Fixed step $\Delta t = 1.5$.

2. Stochastic Kuramoto-Sivashinsky - multiplicative

$$dX = \left(-X_{xxxx} - X_{xx} - XX_{x}\right)dt + \frac{X}{2}dW$$

Fixed step $\Delta t = 1$.

Motivating SDE Example:

Deterministic ODE with non-globally Lipschitz nonlinearity:

$$X'(t) = -X^3$$
, given $X(0) = X_0$, $t \ge 0$.

 $X(t) \equiv 0$ is globally asymptotically stable.

Explicit Euler discretization:

$$Y_{n+1} = Y_n - \Delta t Y_n^3, \quad n \in \mathbb{N}.$$

- ullet $Y_n\equiv 0$ locally asy, stable for $Y_0\in \left(-\sqrt{2/\Delta t},\sqrt{2/\Delta t}
 ight)$
- Unstable 2-cycle : $\left\{-\sqrt{2/\Delta t},\sqrt{2/\Delta t}\right\}$
- If $Y_0 \notin \left[-\sqrt{2/\Delta t}, \sqrt{2/\Delta t}\right]$ then $\lim_{n \to \infty} |Y_n| = \infty$.
- For each fixed $\Delta t > 0$ dynamics is different
- As $\Delta t \rightarrow 0$ the scheme converges.

Now include a stochastic perturbation · · ·

Motivating Example: Stochastic

Consider the map

$$Y_{n+1} = Y_n - \Delta t Y_n^3 + \underbrace{\Delta \beta_{n+1}}_{:=N(0,\Delta t)}, \quad n \in \mathbb{N}.$$

- ▶ For fixed Δt the stochastic perturbation $\Delta \beta_{n+1}$ can push trajectories out of basin of attraction $\left(-\sqrt{2/\Delta t},\sqrt{2/\Delta t}\right)$
- ▶ Problem with growth of Y_n with n!

In this talk we think about changing Δt to Δt_{n+1} .

Idea : Pick a
$$\Delta t_{n+1}$$
 depending Y_n to stay in $\left(-\sqrt{2/\Delta t_n},\sqrt{2/\Delta t_n}\right)$

In fact β from Browmian motion: $\Delta \beta_{n+1} = (\beta(t_{n+1}) - \beta(t_n))$ Stochastic map is the explicit Euler-Maruyama approximation of SDE

$$X(t_{n+1}) = X(t_n) - \int_{t_n}^{t_{n+1}} X(s)^3 ds + \int_{t_n}^{t_{n+1}} d\beta(s)$$
$$dX(t) = -X(t)^3 + d\beta(t).$$

Euler-Maruyama and growth : (e.g. $f(X) = -X^3$, g = 1.)

SDE:
$$dX = f(X)dt + g(X)d\beta$$
.

- ► Suppose *f* or *g*
 - are not globally Lipschitz
 - and satisfy polynomial growth condition

Then
$$\mathbb{E}\left[\|X\|^P\right] < \infty$$
.

Euler-Maruyama method:
$$Y_{n+1} = Y_n + \Delta t f(Y_n) + g(Y_n) \Delta \beta_{n+1}$$
.

For numerics would like:

Bounded moments : $\mathbb{E}\left[\|Y_n\|^p\right] < \infty$, p > 0

Strong convergence :
$$\mathbb{E}\left[|X(t_n)-Y_n|^2\right] < C\Delta t^q$$
, $q>0$.

However

- Fixed step Δt : [Mattingly, Stuart, Higham 2002]
 - Second moment instability :

$$\lim_{n\to\infty}\mathbb{E}\left[|Y_n|^2\right]=\infty.$$

• Non-convergence: [Hutzenthaler, Jentzen, Kloeden 2011].

Some Explicit Methods for SDEs that work ...

➤ Tamed Methods : Eg [Hutzenthaler et al 2012], [Wang&Gan 2013], [Hutzenthaler&Jentzen 2014], [Sabanis 2013, ...],...

Eg: Drift-tamed Euler-Maruyama

$$Y_{n+1} = Y_n + \frac{\Delta t}{1 + \Delta t \|f(Y_n)\|} f(Y_n) + g(Y_n) \Delta \beta_{n+1}$$

- ▶ Basic Idea : Introduce a perturbation
- Balanced Methods : Eg [Tretyakov, Zhang 2013],...
- Truncated Methods: Eg [Mao 2016, Liu& Mao 2017]
- Projected Methods : Eg [Beyn, Isaak, Kruse 2015]
- 1. Prove Moment bounds

$$\sup_{n\in\mathbb{N}}\sup_{n\in\{0,1,\ldots,N\}}\mathbb{E}[\|Y_n\|^p]<\infty.$$

2. Prove strong convergence

$$\left(\mathbb{E}\left[\|X(t)-\bar{Y}_t\|^p\right]\right)^{1/p}\leq C_p\Delta t^{1/2}.$$

Alternatively try adapting the step size.

Stochastic PDE:

We saw at start Stochastic Swift-Hohenberg:

$$dX = \beta X - (1 + \Delta)^2 X + cX^2 - X^3 dt + BdW$$

Write our SPDEs as ODE on Hilbert space H:

$$dX = -AX + F(X)dt + B(X)dW$$

We assume:

- $-A: \mathcal{D}(-A) \to H$ the generator of analytic semigroup $S(t) = e^{-tA}, t \ge 0.$
- B(X) globally Lipschitz

$$||B(X) - B(Y)||_{L_0^2} \le L||X - Y||, \quad X, Y \in H$$

 $||(-A)^{r/2}B(X)||_{L_0^2} \le L(1 + ||X||_r).$

Stochastic PDE : dX = -AX + F(X)dt + B(X)dW

▶ Define the Wiener process with covariance *Q* by

$$W(x,t) = \sum_{k=1}^{\infty} \mu_k^{1/2} \phi_k(x) \beta_k(t).$$

- $\triangleright \beta_k(t)$, be independent identically distributed Brownian motions.
- $ightharpoonup \phi_k$ e.func. of Q, an orthonormal basis of L^2 .

(Often assume same e.func. as linear operator -A).

 \blacktriangleright $\mu_k > 0$ are e.values of covariance operator Q for Wiener process.

Determine spatial correlation:

Below :- parameter r. (r = -0.5, Q = I, d = 1).

Note - most applications do not have globally Lipschitz reaction terms F

SPDEs: dX = -AX + F(X)dt + B(X)dW

Mild solution

$$X(t) = S(t)X_0 + \int_0^t S(t-s)F(X(s))ds + \int_0^t S(t-s)B(X(s))dW(s).$$
 With $S(t) := e^{-tA}$.

- Discretize in space e.g by Finite Elements or spectral Galerkin: $X(t) \approx Y(t)$, $A_h \approx A$.
- Approximation in time to the mild solution:

$$Y(t_{n+1}) = S_h(\Delta t_{n+1})Y(t_n) + \int_{t_n}^{t_{n+1}} S_h(t_{n+1} - s)F(Y(s))ds + \int_{t_n}^{t_{n+1}} S(t_{n+1} - s)B(Y)dW.$$

where, $\Delta t_{n+1} := t_{n+1} - t_n$ and $S_h(\Delta t_{n+1}) := e^{-\Delta t_{n+1} A_h}$.

$$Y_{n+1} := S_h(\Delta t_{n+1}) (Y_n + \Delta t_{n+1} F(Y_n) + B(Y_n) \Delta W_{n+1})$$

Exponential integrator... still issue with nonlinearity. (Will also consider semi-implicit).

• Uniform Δt : Many authors: see for example [L & Rougemont], [Jentzen], [Wang], [Cohen], [Tambue], ...

SPDES : Tamed/Stopped methods

With non-globally Lipschitz F, there are four basic approaches :

Explicit tamed Euler-Maruyama [Gyongy et al 2016]. Similar in approach to tamed methods for SDEs. Perturbation of F to control growth,

$$\tilde{F}(X) \approx \frac{F(X)}{1 + \sqrt{\Delta t} \|F(X)\|}$$
 (1)

"nonlinearity stopped" method of [Jentzen & Pusnik 2015]. Exponential integrator with use of indicator function to turn off non-linearities if

$$||F(X)|| \ge \left(\frac{1}{\Delta t}\right)^{\theta}, \quad \theta \in (0, \frac{1}{4}].$$
 (2)

- Splitting based methods often require exact nonlinear flow. [Bréhier, Cui & Hong 2019, Bréhier & Goudènege 2019, Cai, Gan & Wang 2021]
- Adapt the time step ... [Campbell & L.], [Hausenblas et al, 2020], [Chen, Dang, Hong]

Adaptive time-stepping:

- ▶ Issues from Adaptivity:
 - Increments $\Delta \beta_{n+1}$ depend on Y_n . Using that Δt_{n+1} is a bounded \mathcal{F}_{t_n} stopping time by Doob optional sampling theorem [Shirayev 96]

$$\mathbb{E}\left[\Delta\beta_{n+1}|\mathcal{F}_{t_n}\right] = 0 \quad \text{a.s.}$$

$$\mathbb{E}\left[|\Delta\beta_{n+1}|^2|\mathcal{F}_{t_n}\right] = \Delta t_{n+1} \quad a.s.$$

- **2** Random time steps with $t_n = \sum_{j=0}^{n-1} \Delta t_{n+1}$.
 - need to assume each Δt_{n+1} is \mathcal{F}_{t_n} measurable.
 - there is a random integer N to arrive at a final time T.

Adaptive Time-stepping: Upper and Lower bounds

Have random N, Δt_{n+1}

How to ensure we reach our final time T?

- ullet want finite number of random steps N a.s. and $\Delta t_{n+1}
 eq 0$
- need control on Δt_{n+1} to examine convergence.

Hence require that :

$$0 < \Delta t_{n+1} \le \Delta t_{\text{max}}$$
.

Two Approaches : to get to final time T

1 Introduce Δt_{\min} and fix deterministic $\rho = \Delta t_{\max}/\Delta t_{\min}$.

$$0 < \Delta t_{\mathsf{min}} \leq \Delta t_{n+1} \leq \Delta t_{\mathsf{max}}.$$

- ▶ When $\Delta t_{n+1} > \Delta t_{\min}$ use the standard method.
- ▶ When $\Delta t_{n+1} \leq \Delta t_{\min}$ Introduce a 'backstop' method and set $\Delta t_{n+1} = \Delta t_{\min}$.

Example strategy $: \Delta t_{n+1} \leq \Delta t_{\mathsf{max}} \frac{\|Y_n\|}{\|F(Y_n)\|}$

For SDEs : [Kelly & L, 2017,2018] For SPDEs : [Campbell & L.]

- ▶ Can then show $\mathbb{P}\left[\Delta t_{n+1} \leq \Delta t_{\min}\right] < \epsilon$. (See [Kelly, L. & Sun]).
- ② For particular strategy for picking Δt_{n+1} show N a.s. finite. Example strategy:

$$\Delta t_{n+1} \leq \Delta t_{\mathsf{max}} \frac{(1 + \|Y_n\|^2)}{(1 + \|F(Y_n)\|^2)}.$$

For SDEs: [Fang & Giles 2016, 2020]

For McKean Vlasov : [Reisinger & Stockinger, 2021] For SPDEs : [Chen, Dang, Hong], [Campbell & L.]

Two Approaches : to get to final time T

1 Introduce Δt_{\min} and fix deterministic $\rho = \Delta t_{\max}/\Delta t_{\min}$.

$$0 < \Delta t_{\mathsf{min}} \leq \Delta t_{n+1} \leq \Delta t_{\mathsf{max}}.$$

- ▶ When $\Delta t_{n+1} > \Delta t_{\min}$ use the standard method.
- ▶ When $\Delta t_{n+1} \leq \Delta t_{\min}$ Introduce a 'backstop' method and set $\Delta t_{n+1} = \Delta t_{\min}$.

Example strategy $: \Delta t_{n+1} \leq \Delta t_{\mathsf{max}} \frac{\|Y_n\|}{\|F(Y_n)\|}$

For SDEs: [Kelly & L, 2017,2018]

For SPDEs: [Campbell & L.] (multiplicative noise)

- ▶ Can then show $\mathbb{P}\left[\Delta t_{n+1} \leq \Delta t_{\min}\right] < \epsilon$. (See [Kelly, L. & Sun]).
- ② For particular strategy for picking Δt_{n+1} show N a.s. finite. Example strategy:

$$\Delta t_{n+1} \leq \Delta t_{\mathsf{max}} rac{\left(1 + \|Y_n\|
ight)}{\left(1 + \|F(Y_n)\|
ight)}.$$

For SDEs: [Fang & Giles 2016, 2020]

For McKean Vlasov : [Reisinger & Stockinger, 2021]

For SPDEs: [Chen, Dang, Hong], [Campbell & L.] (SPDE additive noise)

Backstop Approach: multiplicative noise

$$dX = [-AX + F(X)]dt + B(X)dW$$

On a Hilbert space H with norm $\|.\|$

- ► Assumptions on *F*.
 - F satisfies one sided Lipschitz growth condition, $X, Y \in H$

$$\langle F(X) - F(Y), X - Y \rangle \le L_F \|X - Y\|^2.$$

 $\|DF(X)\|_{\mathcal{L}(H)} \le c_1(1 + \|X\|^{c_2}).$

for some $L_F, c_1, c_2 > 0$.

- ► Method :
 - Discretize in space : eg spectral Galerkin $Y(t) = \sum_{j=1}^{J} y_j(t) \phi_j(x) \approx X(t)$
 - In time : $Y^n \approx Y(t_n)$
 - $\Delta t_{n+1} > \Delta t_{\min}$: exponential approximation in time.
 - ▶ $\Delta t_{n+1} \leq \Delta t_{\min}$: backstop with $\Delta t_{n+1} = \Delta t_{\min}$ e.g. nonlinear stopped method [Jentzen & Pusnik 2015].

Backstop: $\rho = \Delta t_{\text{max}}/\Delta t_{\text{min}}$.

Example Adaptive Strategy: Pick Δt_{n+1} so that

$$\Delta t_{n+1} \leq \Delta t_{\mathsf{max}} \frac{\|Y_n\|}{\|F(Y_n)\|}.$$

- ullet $\Delta t_{n+1} < \Delta t_{\mathsf{min}}$ then we use a backstop method
- $\Delta t_{n+1} \geq \Delta t_{\min}$ then use standard exponential method.

$$||F(Y_n)|| \leq \frac{\Delta t_{\mathsf{max}}}{\Delta t_{n+1}} ||Y_n|| \leq \rho ||Y_n||.$$

To bound non-global Lipschitz nonlinearity: (avoid bound on $\mathbb{E}[\|Y_n\|^p]$).

$$||F(Y_n) - F(X(t_n))||^2 \le 2||F(Y_n)||^2 + 2||F(X(t_n))||^2 \le 2\rho^2 ||Y_n||^2 + 2||F(X(t_n))||^2$$

Now add in and subtract $X(t_n)$ so that $Y_n = X(t_n) - Y_n - X(t_n)$

$$||F(Y_n) - F(X(t_n))||^2 \le 4\rho^2 ||E_n||^2 + 4\rho ||X(t_n)||^2 + 2||F(X(t_n))||^2$$

Strong Convergence [Stuart Campbell, L.]

Let X(T) be the mild solution to SPDE.

Let Y_N be the numerical approximation defined over $\{t_n\}_{n\in\mathbb{N}}$, an admissible time-stepping strategy.

For
$$X_0 \in L^2(\mathbb{D}, \mathcal{D}((-A)^{1/2})), \ \epsilon > 0$$

▶ Multiplicative noise : $r \in (0,1)$

$$\left(\mathbb{E}\left\|X(T)-Y_N^h\right\|^2\right)^{1/2}\leq C(T)(\Delta x^{1+r}+\Delta t_{\mathsf{max}}^{\frac{1}{2}-\epsilon}+\lambda_{M+1}^{-\frac{1+r}{2}+\epsilon}).$$

(restrictive conditions on nonlinearity - eg not $X-X^3$).

Proof: outline

- Need to deal with conditional expectation. E.g. to use $\mathbb{E}\left[|\Delta\beta_{n+1}|^2|\mathcal{F}_{t_n}\right] = \Delta t_{n+1}$ a.s.
- Need to look at error over 1-step (not final time estimate)
- Need to combine adaptive scheme and backstop and deal with random number of steps *N*.

$dX = \Delta X + X - X^3 dt + BX dW$

Numerical Methods

Compare 4 numerical methods

Adaptive

$$Y_{n+1}^{h} = S_h(\Delta t_{n+1}) (Y_n^h + F(Y_n^h)\Delta t_{n+1} + B(Y_n^h)\Delta W_{n+1})$$

Stopped

$$Y_{n+1}^{h} = S_{h}(\Delta t) \left(Y_{n}^{h} + \left\{ F(Y_{n}^{h}) \Delta t + B(Y_{n}^{h}) \Delta W_{n+1} \right\} \mathbb{1}_{\left\| F(Y_{n}^{h}) \right\| \leq \left(\frac{1}{\Delta t}\right)^{\theta}} \right)$$

• Tamed Exponential (no proof)

$$Y_{n+1}^h = S_h(\Delta t) \left(Y_n^h + \tilde{F}(Y_n^h) \Delta t + B(Y_n^h) \Delta W_{n+1} \right)$$

• Tamed Euler-Maruyama

$$Y_{n+1}^h = Y_n^h + \tilde{C}(Y_n^h)\Delta t + B(Y_n^h)\Delta W_{n+1}$$

where
$$C(X) = -AX + F(X)$$
 and $\tilde{f}(X) = \frac{f(X)}{1 + \sqrt{\Delta t} \|f(X)\|}$.

For fixed step methods set $\Delta t = \overline{\Delta t} = \frac{1}{N} \sum \Delta t_n$

$dX = \Delta X + X - X^3 dt + BX dW$

SPDE - Additive noise

$$dX = [-AX + F(X)]dt + BdW$$

On a Hilbert space H with norm $\|.\|$.

Assumption on F

• F satisfies one sided Lipschitz growth condition, $X, Y \in H$

$$\langle F(X) - F(Y), X - Y \rangle \le L_F \|X - Y\|^2$$
.
 $\|F(X) - F(Y)\| \le C(1 + \|X\|_E^c + \|Y\|_E^c)\|X - Y\|$.
 $\|DF(X)\|_{\mathcal{L}(H)} \le C(1 + \|X\|_E^c)\|$
 $\|F(X)\|_E \le C(1 + \|X\|_E^c)$, $\|F(X)\| \le C(1 + \|X\|_E^c)\|X\|$,

where $||u||_{E} := \sup_{x \in D} |u(x)|$.

Here can look at, for example, Allen-Cahn equation $F(X) = X - X^3$.

Showing N a.s. finite

$$dX = [-AX + F(X)]dt + BdW$$

- Discretize in space : eg spectral Galerkin $Y(t) = \sum_j y_j(t)\phi_j(x) \approx X(t)$
- In time : $Y(t_n) \approx Y_n$ from exponential method. We have $T = \sum_{j=0}^{N} \Delta t_{n+1}$. Need N a.s. finite.

$$0 < \Delta t_{n+1} \le \Delta t_{\mathsf{max}} \frac{(1 + \|Y_h^n\|^2)}{(1 + \|F(Y_h^n)\|^2)}.$$

Our starting point : we know we can do K steps. Prove that must reach T

Other see : [Fang & Giles 2020] for SDEs and [Chen, Dang, Hong] for SPDEs.

Showing N a.s. finite

Adaptive exponential method is defined by the recursion

$$Y^{n+1} = \underbrace{S_h(\Delta t_{n+1})P_hY^n + \int_{t_n}^{t_{n+1}} S_h(t_{n+1} - s)P_hF(Y^n)ds}_{Z^n} + \underbrace{\int_{t_n}^{t_{n+1}} S_h(t_{n+1} - t_n)P_hBP_JdW(s)}_{W^n}.$$

- **1** Bound $\mathbb{E}[\|W^n\|^p]$ and $\mathbb{E}[\|F(W^n)\|^p]$ for all n
- ② Z^n : use adaptivity to bound $\mathbb{E}\left[\|Z^K\|^p\right]$ after K deterministic steps.
- ① Use dominated convergence to bound $\mathbb{E}\left[\left\|Z^{N}\right\|^{p}\right] = \mathbb{E}\left[\lim_{K \to \infty} \left\|Z^{K}(\tau_{K})\right\|^{p}\right]$ independently of K, N, $\tau_{K} := \sum_{n=0}^{N} \Delta t_{n+1} \mathbb{1}_{\{n \le K\}}.$
- Timestepping plus moment bounds form a contradiction argument so
 - → ∃ a.s. finite N
 - with $\mathbb{E}\left[\tau_{N}\right]=T$,
 - and $\mathbb{E}[N] = O(1/\Delta t_{\mathsf{max}})$.
- **§** Finite upper bound on T and reverse Markov shows $\mathbb{P}[\tau_N < T] = 0$.

Strong Convergence [Stuart Campbell, L.]

Let X(T) be the mild solution to SPDE.

Let Y_N^h be the numerical approximation defined over $\{t_n\}_{n\in\mathbb{N}}$, an admissible time-stepping strategy.

For
$$X_0 \in L^2(\mathbb{D}, \mathcal{D}((-A)^{1/2}))$$
, $\epsilon > 0$

▶ Additive noise : $r \in (-1, 0]$

$$\left(\mathbb{E}\left\|X(T)-Y_N^h\right\|^2\right)^{1/2}\leq C(T)(\Delta x^{1+r-\epsilon}+\Delta t_{\max}^{\min(\frac{1}{2},(1+r)/2)-\epsilon}+\lambda_{M+1}^{-\frac{1+r}{2}+\epsilon}).$$

Notes:

- less restrictive conditions on nonlinearity: eg $X X^3$ OK.
- includes space-time white.

Proof: Use that have finite N a.s. and moment bound.

Numerical Methods

Compare 4 numerical methods

Adaptive

$$Y_{n+1}^{h} = S_h(\Delta t_{n+1}) (Y_n^h + F(Y_n^h)\Delta t_{n+1} + B\Delta W_{n+1})$$

Stopped

$$Y_{n+1}^h = S_h(\Delta t) \left(Y_n^h + \left\{ F(Y_n^h) \Delta t + B \Delta W_{n+1} \right\} \mathbb{1}_{\left\| F(Y_n^h) \right\| \leq \left(\frac{1}{\Delta t}\right)^{\theta}} \right)$$

• Tamed Exponential (no proof)

$$Y_{n+1}^h = S_h(\Delta t) \left(Y_n^h + \tilde{F}(Y_n^h) \Delta t + B \Delta W_{n+1} \right)$$

• Tamed Euler-Maruyama

$$Y_{n+1}^h = Y_n^h + \tilde{C}(Y_n^h)\Delta t + B\Delta W_{n+1}$$

where
$$C(X) = -AX + F(X)$$
 and $\tilde{f}(X) = \frac{f(X)}{1 + \sqrt{\Delta t} \|f(X)\|}$.

For fixed step methods set $\Delta t = \overline{\Delta t} = \frac{1}{N} \sum \Delta t_n$

Swift-Hoenberg SPDE

SPDE defined by

$$dX = (\beta X - (1 + \Delta)^{2}X + cX^{2} - X^{3})dt + BdW,$$

we set $\beta = -0.7$, c = 1.8 and B = 0.5.

• Used in many applications involving pattern formation, including fluid flow and neural tissue.

$dX = \beta X - (1 + \Delta)^2 X + cX^2 - X^3 dt + BdW \ (r = -0.5)$

Summary so far

- Introduced issue of non-convergence for explicit methods
 - SDF
 - Stochastic PDFs
- Adaptive time stepping :
 - Conditional Expectation to recover standard Brownian motion properties.
 - Need $0 < \Delta t_{n+1}$ and finite N a.s. Two strategies
 - Used Backstop strategy for multiplicative noise.
 Examined strong convergence
 - Proof of N a.s. Finite for additive noise.
 Examined strong convergence
- In both cases see improved efficiency

Application in deterministic setting?

Given

$$dX = -AX + F(X)dt + B(X)dW$$

Examined exponential integrator:

$$Y_{n+1} := S_h(\Delta t_{n+1}) (Y_n + \Delta t_{n+1} F(Y_n) + B(Y_n) \Delta W_{n+1})$$

where, $\Delta t_{n+1}:=t_{n+1}-t_n$ and $S_h(\Delta t_{n+1}):=e^{-\Delta t_{n+1}A_h}$.

Alternative : semi-implicit

$$Y_{n+1} := (I + \Delta t A)^{-1} (Y_n + \Delta t_{n+1} F(Y_n) + B(Y_n) \Delta W_{n+1})$$

Similar results on the adaptivity.

In deterministic setting $B \equiv 0$:

Get standard exponential integrator

$$Y_{n+1} := S_h(\Delta t_{n+1}) \left(Y_n + \Delta t_{n+1} F(Y_n) \right)$$

Or semi-implicit method

$$Y_{n+1} := (I + \Delta t_{n+1}A)^{-1} (Y_n + \Delta t_{n+1}F(Y_n))$$

Deterministic case

Standard exponential integrator

$$Y_{n+1} := S_h(\Delta t_{n+1}) \left(Y_n + \Delta t_{n+1} F(Y_n) \right)$$

Or semi-implicit method

$$Y_{n+1} := (I + \Delta t_{n+1}A)^{-1} (Y_n + \Delta t_{n+1}F(Y_n))$$

- There is no instability directly from from the linear term.
- But nonlinearity is explicit.
- Have a restriction on Δt from the nonlinearity.

Deterministic KS : $u_t = -u_{xxxx} - u_{xx} - u_{xx}$

$$\Delta t = 0.1, \Delta t = 0.6702$$

$$\Delta t_{\sf max} = 1$$

Deterministic SH: $u_t = \beta u - (1 + \Delta)^2 u + cu^2 - u^3$

$$\Delta t = 0.1, \Delta t = 1.2077$$

$$\Delta t_{\sf max} = 5$$

Summary ... again

- Introduced issue of non-convergence for explicit methods
 - SDE
 - Stochastic PDEs
- Adaptive time stepping :
 - Conditional Expectation to recover standard Brownian motion properties.
 - Need $0 < \Delta t_{n+1}$ and finite N a.s. Two strategies
 - Used Backstop strategy for multiplicative noise.
 Examined strong convergence
 - Proof of N a.s. Finite for additive noise.
 Examined strong convergence
 - ▶ In both cases see improved efficiency
- Potential application for deterministic system.
- ► Thank you.